山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (10): 81-88.doi: 10.6040/j.issn.1671-9352.0.2014.578
吴成明
WU Cheng-ming
摘要: 运用Schauder不动点定理研究了二阶非自治奇异耦合系统
正周期解的存在性,其中ai, ei∈L1(R/TZ, R), fi∈Car(R/TZ×(0,∞), R),即fi|[0,T]:[0,T]×(0,∞)→R是L1-Carathéodory函数(i=1, 2),并且f1, f2分别在y=0, x=0处允许有奇性。在扰动项积分值符号同正、同负和异号的情况下,分别获得了该奇异耦合系统存在正周期解的条件。
中图分类号:
[1] TORRES P J. Weak singularities may help periodic solutions to exist[J]. J Differential Equations, 2007, 232(1):277-284. [2] CHU Jifeng, TORRES P J. Applications of Schauder's fixed point theorem to singular differential equations[J]. Bull London Math Soc, 2007, 39(4):653-660. [3] CHU Jifeng, LI Ming. Positive periodic solutions of Hill's equations with singular nonlinear perturbations[J]. Nonlinear Anal, 2008, 69(1):276-286. [4] MA Ruyun, CHEN Ruipeng, HE Zhiqian. Positive periodic solutions of second-order differential equations with weak singularities[J]. Applied Mathematics and Computation, 2014, 232:97-103. [5] O'REGAN D, WANG Haiyan. Positive periodic solutions of systems of second order ordinary differential equations[J]. Positivity, 2006, 10(2):285-298. [6] CHU Jifeng, TORRES P J, ZHANG Meirong. Periodic solutions of second order non-autonomous singular dynamical systems[J]. J Differential Equations, 2007, 239(1):196-212. [7] WANG Haiyan. Periodic solutions to non-autonomous second-order systems[J]. Nonlinear Anal, 2009, 71(3-4):1271-1275. [8] CAO Zhongwei, JIANG Daqing. Periodic solutions of second order singular coupled systems[J]. Nonlinear Anal, 2009, 71(9):3661-3667. [9] 姚庆六. 奇异二阶周期微分系统的正解[J]. 数学物理学报, 2012, 32A(3):576-587. YAO Qingliu. Positive solutions of singular second order periodic differential systems[J]. Acta Mathematica Scientia, 2012, 32A(3):576-587. [10] TORRES P J. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem[J]. J Differential Equations, 2003, 190(2):643-662. [11] DEIMLING K. Nonlinear functional analysis[M]. Berlin: Springer, 1985. |
[1] | 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88. |
[2] | 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87. |
[3] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
[4] | 徐嫚. 带双参数的脉冲泛函微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(06): 69-74. |
[5] | 娄国久 张兴秋 王建国. Banach空间一阶非线性混合型积微分方程正解的存在性[J]. J4, 2009, 44(8): 74-79. |
[6] | 孟艳双,杨振起 . 一类概周期系数微分方程的概周期解[J]. J4, 2006, 41(5): 87-90 . |
|