山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (4): 49-52.doi: 10.6040/j.issn.1671-9352.0.2015.308
陈彬,Abuelgasimalshaby Elzebir
CHEN Bin, Abuelgasimalshaby Elzebir
摘要: 在共振条件∑mk=1ak=1下, 运用紧向量场方程的解集连通理论对二阶多点边值问题u″(t)=f(t,u(t))+e(t), t∈[0,1],u'(0)=0, u(1)=∑mk=1aku(ηk)建立了解的存在性和多解性结果。其中, f:[0,1]×R→R连续, e∈C([0,1],R), 0<η1<η2<…<ηm<1, ak>0(k=1,2,…,m)。
中图分类号:
[1] IlIN V, MOISEEV E. Non-local boundary value problem of the first kind for a Sturm-Liouville operator in itsdifferential andfinite difference aspects[J]. Differential Equations, 1987, 23(7):803-810. [2] MA Ruyun. Positive solutions a nonlinear three-point boundary value problem[J]. Electronic Journal of Differential Equations, 1999, 34:1-8. [3] ZHANG Guang, CHENG Suisun. Positions of m-point boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2004, 291(1):406-418. [4] ZHANG Guang, CHENG Suisun. Multiple positive solutions of singular second-order m-point boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2006, 317(1):442-447. [5] KARAKOSTAS G, TSAMATOS P. On a nonlocal boundary value problem[J]. Journal of Mathematical Analysis and Applications, 2001, 259(1):209-218. [6] 马如云. 非线性常微分方程非局部问题[M]. 北京: 科学出版社, 2004. MA Ruyun. Nonlocal problems of nonlinear ordinary differential equations[M]. Beijing: Science Press, 2004. [7] HAN Xiaoling. Positive solutions a three-point boundary value problem at resonance[J]. Journal of Mathematical Analysis and Applications, 2007, 336(1):556-568. [8] MA Ruyun. Existence results of a m-point boundary value problem at resonance[J]. Journal of Mathematical Analysis and Applications, 2004, 294(1):147-157. [9] MA Ruyun. Nonlinear discrete Sturm—Liouville problems at resonance[J]. Nonlinear Analysis, 2007, 67(11):3050-3057. [10] MARIA A D, ROSANA R. Multipoint boundary value problems of Neumann type for functional differential equations[J]. Nonlinear Analysis, 2012 13(4):1662-1675. [11] MOHAMED M, THOMPSON B, JUSOH M S. First-order three-point boundary value problems at resonance[J]. Journal of Computational and Applied Mathematics, 2011, 235(16):4796-4801. |
[1] | 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31. |
[2] | 苏小凤,贾梅,李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8): 66-73. |
[3] | 苏艳. 共振离散二阶Neumann问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 37-41. |
[4] | 朱雯雯. 一阶多点边值问题多个解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 42-48. |
[5] | 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41. |
[6] | 张瑞敏,林迎珍. 多点周期边值问题新的再生核方法[J]. J4, 2013, 48(12): 42-46. |
[7] | 黎明,徐明瑜. 分数阶Bloch方程的解[J]. J4, 2013, 48(1): 56-61. |
[8] | 魏望和,侯春菊,卢敏,刘维清. Cu0.5Zr2(PO4)3中Cu2+离子中心各向异性g因子研究[J]. J4, 2012, 47(7): 26-29. |
[9] | 杨春风. 一类三阶三点边值问题正解的存在性和不存在性[J]. J4, 2012, 47(10): 109-115. |
[10] | 姜良站,李艳玲*. 一类具有常数避难所的捕食-食饵模型非常数正解的存在性[J]. J4, 2011, 46(2): 15-21. |
[11] | 陈天兰. 一类离散三点边值共振问题解的存在性[J]. J4, 2010, 45(8): 81-86. |
[12] | 王敏杰 朱连轩 赵安庆 袁超. 四面体络离子(CrO4)4-电子顺磁共振g因子的理论计算[J]. J4, 2010, 45(1): 27-30. |
[13] | . 一类pLaplacian多点边值问题单调迭代正解的存在性[J]. J4, 2009, 44(5): 81-85. |
[14] | 别群益. 具避难所的捕食-食饵模型非常数正解的存在性[J]. J4, 2009, 44(3): 50-55 . |
[15] | 姚庆六. 非线性三阶边值问题的正周期解[J]. J4, 2009, 44(2): 14-18. |
|