您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (8): 66-73.doi: 10.6040/j.issn.1671-9352.0.2015.352

• • 上一篇    下一篇

共振条件下分数阶微分方程积分边值问题解的存在性

苏小凤,贾梅*,李萌萌   

  1. 上海理工大学理学院, 上海 200093
  • 收稿日期:2015-07-27 出版日期:2016-08-20 发布日期:2016-08-08
  • 通讯作者: 贾梅(1963— ), 女, 副教授, 研究方向为微分方程理论及应用. E-mail:jiamei-usst@163.com E-mail:1205546468@qq.com
  • 作者简介:苏小凤(1987— ), 女, 硕士研究生, 研究方向为微分方程理论及应用. E-mail:1205546468@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11171220);沪江基金资助项目(B14005)

Existence of solution for fractional differential equation integral boundary value problem at resonance

SU Xiao-feng, JIA Mei*, LI Meng-meng   

  1. College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2015-07-27 Online:2016-08-20 Published:2016-08-08

摘要: 研究了一类共振条件下分数阶微分方程积分边值问题解的存在性。利用重合度理论,在dim Ker L=2时,建立并证明了边值问题解的存在性定理。

关键词: 分数阶微分方程, 共振, 积分边值问题, 重合度理论, Caputo导数

Abstract: Existence of solutions for a class of fractional differential equations with integral boundary conditions is studied at resonance. By using coincidence degree theory, we obtain and prove the theorem about existence of solutions for the integral boundary value problem with dim Ker L=2.

Key words: fractional differential equation, integral boundary value problem, resonance, coincidence degree theory, Caputo derivative

中图分类号: 

  • O175.8
[1] 郑祖庥. 分数微分方程的发展和应用[J]. 徐州师范大学学报:自然科学版,2008, 26(2):1-10. ZHENG Zuxiu. The development and application of fractional differential equation[J]. Journall of Xuzhou Normal University: Natural Science Edition, 2008, 26(2):1-10.
[2] ZHANG Xuemei, FENG Meiqiang, GE Weigao. Existence result of second-order differential equations with integral boundary condition at resonance[J]. J Math Anal Appl, 2009, 353(1):311-319.
[3] BAI Zhangbing, ZHANG Yinhan. The existence of solutions for a fractional multi-point boundary value problem[J]. Comput Math Appl, 2010, 60(8):2364-2372.
[4] 沈立, 刘锡平, 卢振花. 共振条件下三阶三点边值问题解的存在性[J]. 上海理工大学学报, 2010, 32(1):69-72. SHEN Li, LIU Xiping, LU Zhenhua. Existence of solutions for third-order three-point boundary value problems at resonance[J]. Journal of University of Shanghai for Science and Technology, 2010, 32(1):69-72.
[5] GUPTA C P. A second order m-point boundary value problem at resonance[J]. Nonlinear Anal, 1995, 24(10):1483-1489.
[6] LIU Bing. Solvability of multi-point boundary problem at resonance(II)[J]. Appl Math Comput, 2003, 136(2-3):353-377.
[7] LIU Hongliang, OUYANG Zigen. Existence of solutions for second-order three-point integral boundary value problems at resonance[J]. Bound Value Probl, 2013, 2013:197.
[8] ZHANG Shuqing, HU Lei, SHI Ailing. Existence result for a nonlinear fractional differential equation with integral boundary conditions at resonance[J]. Adv Difference Equ, 2013, 2013:353.
[9] JIANG Weihua. Solvability for fractional differential equations at resonance on the half line[J]. Appl Math Comput, 2014, 247:90-99.
[10] BAI Zhanbing, ZHANG Yinghan, Solvability of fractional three-point boundary value problems with nonlinear growth[J]. Appl Math Comput, 2011, 218(5):1719-1725.
[11] 白占兵. 分数阶微分方程边值问题理论及应用[M]. 北京: 科学技术出版社, 2012. BAI Zhanbing. Theory and applications of fractional differential equations boundary value problems[M]. Beijing: Science and Technology Press, 2012.
[12] 杨浩, 刘锡平, 吴贵云. 一类分数阶p-Laplace 算子微分方程非局部边值问题解的存在性[J]. 山东大学学报(理学版),2014, 50(4):57-62. YANG Hao, LIU Xiping, WU Guiyun. Existence of solutions for a class of nonlocal boundary value problem for fractional differential equations with p-Laplacian[J]. Journal of Shandong University(Natural Science), 2014, 50(4):57-62.
[13] 李凡凡, 刘锡平, 智二涛. 分数阶时滞微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版),2013, 48(12):24-29. LI Fanfan, LIU Xiping, ZHI Ertao. Existence of solutions for fractional delay differential equations with integral boundary conditions[J]. Journal of Shandong University(Natural Science), 2013, 48(12):24-29.
[14] 刘帅, 贾梅, 秦小娜. 带积分边值条件的分数阶微分方程解的存在性与唯一性[J]. 上海理工大学学报, 2014, 36(5):409-415. LIU Shuai, JIA Mei, QIN Xiaona. Existence and uniqueness of solutions for fractional differential equations with integral boundary conditions[J]. Journal of University of Shanghai for Science and Technology, 2014, 36(5):409-415.
[15] PODLUBNY I. Fraction differential equations[M]. New York: Acad Press, 1999.
[16] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equation[M]. Netherlands: Elsevier Science, 2006.
[17] 郭大钧, 孙经先, 刘兆理. 非线性常微分方程泛函方法[M]. 2版. 济南: 山东科学技术出版社, 2006. GUO Dajun, SUN Jingxian, LIU Zhaoli. Functional methods for nonlinear ordinary differential equations[M]. 2nd ed. Jinan: Shandong Science and Technology Press, 2006.
[1] 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31.
[2] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[3] 张迪,刘文斌. p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80.
[4] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57.
[5] 仲秋艳,张兴秋. 含参数及p-Laplacian算子的奇异分数阶微分方程积分边值问题的正解[J]. 山东大学学报(理学版), 2016, 51(6): 78-84.
[6] 苏艳. 共振离散二阶Neumann问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 37-41.
[7] 陈彬,Abuelgasimalshaby Elzebir. 共振条件下的二阶多点边值问题解的存在性和多解性[J]. 山东大学学报(理学版), 2016, 51(4): 49-52.
[8] 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48.
[9] 杨浩, 刘锡平, 吴贵云. 一类分数阶p-Laplace算子微分方程非局部边值问题解的存在性[J]. 山东大学学报(理学版), 2015, 50(04): 56-62.
[10] 郑春华, 刘文斌. 一类具有时滞的分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2015, 50(03): 73-79.
[11] 陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿. 小波法求解分数阶微分方程组及其收敛性分析[J]. 山东大学学报(理学版), 2015, 50(02): 67-74.
[12] 周文学1,2, 刘海忠1. 一类分数阶微分方程边值问题解的存在性[J]. J4, 2013, 48(8): 45-49.
[13] 陈一鸣,孙慧,刘乐春,付小红. Legendre多项式求解变系数的分数阶Fredholm积分微分方程[J]. J4, 2013, 48(6): 80-86.
[14] 李凡凡,刘锡平*,智二涛. 分数阶时滞微分方程积分边值问题解的存在性[J]. J4, 2013, 48(12): 24-29.
[15] 秦小娜,贾梅*,刘帅. 具Caputo导数分数阶微分方程边值问题正解的存在性[J]. J4, 2013, 48(10): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!