山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (8): 74-78.doi: 10.6040/j.issn.1671-9352.0.2015.450
李月霞,张丽娜,张晓杰
LI Yue-xia, ZHANG Li-na, ZHANG Xiao-jie
摘要: 在2维空间中用局部分支方法讨论Lengyel-Epstein模型的分支问题。 首先证明局部分支解的存在性,其次在分支点附近确定分支方向。
中图分类号:
[1] TURING A M. The chemical basis of morphogenesis[J]. Phil Trans Roy Soc Londonser, 1952, B237:37-72. [2] CASTETS V, DULOS E, BOISSONADE J, et al. Experimental evidence of a sustained Turing-type equilibrium chemical pattern[J]. Phys Rev Lett, 1990, 64:2953-2956. [3] LENGYEL I, EPSTEIN I R. Modeling of turing structures in the chlorite-iodidemalonic acid-starch reaction system[J]. Science, 1991, 251:650-652. [4] JANG Jaeduck, NI Weiming, TANG Moxun. Global bifurcation and structure of turing patterns in the 1-D Lengyel-Epstein model[J]. J Dyn Diff Equ, 2005, 16(2):297-320. [5] DU Linglong, WANG Mingxin. Hopf bifurcation analysis in the 1-D Lengyel-Epsteinreaction-diffusion model[J]. J Math Anal Appl, 2010, 366:473-485. [6] WEI Minghua, WU Jianhua, GUO Gaihui. Turing structures and stability for the 1-D Lengyel-Epstein system[J]. J Math Chem, 2012, 50:2374-2396. [7] JIN Jianyin, SHI Junping, WEI Junjie, et al. Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction[J]. Rocky Mt J Math, 2013, 43(5):1637-1674. [8] KAR S, BHATTACHARJEE J K, RAY D D. A model reaction-diffusion system under spatial perturbation: theoretical and numerical investigation[J]. Eur Phys J, 2005, 43B:109-114. [9] NI Weiming, TANG Moxun. Turing patterns in the Lengyel-Epstein system for the CIMA reaction[J]. Trans Am Math Soc, 2005, 357:3953-3969. [10] CRANDALL M G, RABINOWITZ P H. Bifurcation from simple eigenvalues[J]. J Funct Anal, 1997, 8:321-340. |
[1] | 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94. |
[2] | 史学伟,贾建文. 一类具有信息变量和等级治愈率的SIR传染病模型的研究[J]. 山东大学学报(理学版), 2016, 51(3): 51-59. |
[3] | 田有功1,焦桂梅2*. 离散的 5 阶凸随机序的极值分布及其应用[J]. 山东大学学报(理学版), 2014, 49(1): 99-104. |
[4] | 伍代勇, 张海. 具有Allee效应和时滞的单种群离散模型的稳定性和分支[J]. 山东大学学报(理学版), 2014, 49(07): 88-94. |
[5] | 陈斯养,刘晓娜. 具有干扰和分段常数变量模型的稳定性及分支[J]. J4, 2012, 47(11): 109-118. |
[6] | 陈宏宇 牛翠霞 邹青松. 树的k-分支限制控制数的一个下界[J]. J4, 2010, 45(2): 1-4. |
[7] | 赵虎 张雄伟 李生刚. 弱拓扑分子格的连通性及局部连通性[J]. J4, 2010, 45(2): 90-94. |
[8] | 张志戎. 一类多项式系统极限环惟一性与奇点分支[J]. J4, 2009, 44(9): 90-92. |
|