您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (8): 74-78.doi: 10.6040/j.issn.1671-9352.0.2015.450

• • 上一篇    下一篇

2维Lengyel-Epstein模型的分支结构

李月霞,张丽娜,张晓杰   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2015-09-17 出版日期:2016-08-20 发布日期:2016-08-08
  • 作者简介:李月霞(1989— ), 女, 硕士, 研究方向为偏微分方程及其应用. E-mail:1197434298@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11061031)

Bifurcation structures for the 2-D Lengyel-Epstein system

LI Yue-xia, ZHANG Li-na, ZHANG Xiao-jie   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, Gansu, China
  • Received:2015-09-17 Online:2016-08-20 Published:2016-08-08

摘要: 在2维空间中用局部分支方法讨论Lengyel-Epstein模型的分支问题。 首先证明局部分支解的存在性,其次在分支点附近确定分支方向。

关键词: 非常数正平衡解, 分支, Lengyel-Epstein模型

Abstract: The bifurcation problem is considered for the Lengyel-Epstein model by the local bifurcation method in R2. Local bifurcation branches of stationary solutions are constructed, and the directions of the branches near the bifurcation points are obtained.

Key words: bifurcation, non-constant positive steady-states, Lengyel-Epstein system

中图分类号: 

  • O175.26
[1] TURING A M. The chemical basis of morphogenesis[J]. Phil Trans Roy Soc Londonser, 1952, B237:37-72.
[2] CASTETS V, DULOS E, BOISSONADE J, et al. Experimental evidence of a sustained Turing-type equilibrium chemical pattern[J]. Phys Rev Lett, 1990, 64:2953-2956.
[3] LENGYEL I, EPSTEIN I R. Modeling of turing structures in the chlorite-iodidemalonic acid-starch reaction system[J]. Science, 1991, 251:650-652.
[4] JANG Jaeduck, NI Weiming, TANG Moxun. Global bifurcation and structure of turing patterns in the 1-D Lengyel-Epstein model[J]. J Dyn Diff Equ, 2005, 16(2):297-320.
[5] DU Linglong, WANG Mingxin. Hopf bifurcation analysis in the 1-D Lengyel-Epsteinreaction-diffusion model[J]. J Math Anal Appl, 2010, 366:473-485.
[6] WEI Minghua, WU Jianhua, GUO Gaihui. Turing structures and stability for the 1-D Lengyel-Epstein system[J]. J Math Chem, 2012, 50:2374-2396.
[7] JIN Jianyin, SHI Junping, WEI Junjie, et al. Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction[J]. Rocky Mt J Math, 2013, 43(5):1637-1674.
[8] KAR S, BHATTACHARJEE J K, RAY D D. A model reaction-diffusion system under spatial perturbation: theoretical and numerical investigation[J]. Eur Phys J, 2005, 43B:109-114.
[9] NI Weiming, TANG Moxun. Turing patterns in the Lengyel-Epstein system for the CIMA reaction[J]. Trans Am Math Soc, 2005, 357:3953-3969.
[10] CRANDALL M G, RABINOWITZ P H. Bifurcation from simple eigenvalues[J]. J Funct Anal, 1997, 8:321-340.
[1] 张道祥,孙光讯,马媛,陈金琼,周文. 带有Holling-III功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J]. 山东大学学报(理学版), 2018, 53(4): 85-94.
[2] 史学伟,贾建文. 一类具有信息变量和等级治愈率的SIR传染病模型的研究[J]. 山东大学学报(理学版), 2016, 51(3): 51-59.
[3] 田有功1,焦桂梅2*. 离散的 5 阶凸随机序的极值分布及其应用[J]. 山东大学学报(理学版), 2014, 49(1): 99-104.
[4] 伍代勇, 张海. 具有Allee效应和时滞的单种群离散模型的稳定性和分支[J]. 山东大学学报(理学版), 2014, 49(07): 88-94.
[5] 陈斯养,刘晓娜. 具有干扰和分段常数变量模型的稳定性及分支[J]. J4, 2012, 47(11): 109-118.
[6] 陈宏宇 牛翠霞 邹青松. 树的k-分支限制控制数的一个下界[J]. J4, 2010, 45(2): 1-4.
[7] 赵虎 张雄伟 李生刚. 弱拓扑分子格的连通性及局部连通性[J]. J4, 2010, 45(2): 90-94.
[8] 张志戎. 一类多项式系统极限环惟一性与奇点分支[J]. J4, 2009, 44(9): 90-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!