山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (12): 72-80.doi: 10.6040/j.issn.1671-9352.0.2017.312
张迪,刘文斌*
ZHANG Di, LIU Wen-bin*
摘要: 讨论了一类带p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题,通过对非线性项的合理控制,利用Mawhin连续定理得到了解的存在性。
中图分类号:
[1] ZHANG Xingqiu, ZHONG Qiuyan. Multiple positive solutions for nonlocal boundary value problems of singular fractional differential equations[J]. Boundary Value Problems, 2016, 2016(1):1-11. [2] JIA Mei, ZHANG Haibin, CHEN Qiang. Existence of positive solutions for fractional differential equation with integral boundary conditions on the half-line[J]. Boundary Value Problems, 2016, 2016(1):1-16. [3] JIA Mei, LIU Xiping. Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions[J]. Applied Mathematics and Computation, 2014, 232:313-323. [4] 郑春华,刘文斌.一类具有时滞的分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版),2015, 50(3):73-79. ZHEN Chunhua, LIU Wenbin. Existence of positive solutions of the boundary value problem for a class of fractional differential equations w ith delay[J]. Journal of Shandong University(Natural Science), 2015, 50(3):73-79. [5] XIE Wenzhe, XIAO Jing, LUO Zhiguo. Existence of extremal solutions for nonlinear fractional differential equation with nonlinear boundary conditions[J]. Applied Mathematics Letters, 2015, 41:46-51. [6] NTOUYA S K, ETEMAD S. On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions[J]. Applied Mathematics and Computation, 2015, 266:235-243. [7] LÜ Zhiwei. Existence results for m-point boundary value problems of nonlinear fractional differential equations with p-Laplacian operator[J]. Advances in Difference Equations, 2014, 2014(1):1-16. [8] LIU Xiping, JIA Mei, GE Weigao. Multiple solutions of a p-Laplacian model involving a fractional derivative[J]. Advances in Difference Equations, 2013, 2013(1):126. [9] SUN Bo, GE Weigao. Existence and iteration of positive solutions to a class of Sturm-Liouville-like p-Laplacian boundary value problems[J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 69(4):1454-1461. [10] CHEN Taiyong, LIU Wenbin, HU Zhigang. A boundary value problem for fractional differential equation with p-Laplacian operator at resonance[J]. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75(6):3210-3217. [11] CHEN Taiyong, LIU Wenbin. An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator[J]. Applied Mathematics Letters, 2012, 25:1671-1675. [12] CHEN Yunmei, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM journal on Applied Mathematics, 2006, 66(4):1383-1406. [13] SZYMANEK E. The application of fractional order differential calculus for the description of temperature profiles in a granular layer[M]. Switzerland: Springer, 2013: 243-248. [14] SHEN Tengfei, LIU Wenbin. Existence of solutions for fractional integral boundary value problems with p(t)-Laplacian operator[J]. Journal of Nonlinear Science and Applications, 2016, 9(2016):5000-5010. [15] ZHANG Qihu, WANG Yan, QIU Zhimei. Existence of solutions and boundary asymptotic behavior of p(r)-Laplacian equation multi-point boundary value problems[J]. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72(6):2950-2973. [16] FAN Xianling, ZHANG Qihu, ZHAO Dun. Eigenvalues of p(x)-Laplacian Dirichlet problem[J]. Journal of Mathematical Analysis and Applications, 2005, 302(2):306-317. [17] PODLUBNY I. Fractional differential equations [M]. San Diego: Academic Press,1999. [18] MAWHIN J. Topological degree and boundary value problems for nonlinear differential equations[M]. Berlin: Springer, 1993: 74-142. |
[1] | 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56. |
[2] | 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37. |
[3] | 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75. |
[4] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[5] | 崔玉军,赵聪. 四阶微分方程奇异边值问题解的唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 73-76. |
[6] | 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57. |
[7] | 苏小凤,贾梅,李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8): 66-73. |
[8] | 仲秋艳,张兴秋. 含参数及p-Laplacian算子的奇异分数阶微分方程积分边值问题的正解[J]. 山东大学学报(理学版), 2016, 51(6): 78-84. |
[9] | 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103. |
[10] | 朱雯雯. 一阶多点边值问题多个解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 42-48. |
[11] | 陈彬,Abuelgasimalshaby Elzebir. 共振条件下的二阶多点边值问题解的存在性和多解性[J]. 山东大学学报(理学版), 2016, 51(4): 49-52. |
[12] | 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53. |
[13] | 张申贵. 带p(x)-调和算子的Kirchhoff型方程的多重解[J]. 山东大学学报(理学版), 2016, 51(10): 48-53. |
[14] | 徐嫚. 奇异φ-Laplacian周期边值问题解的存在性[J]. 山东大学学报(理学版), 2015, 50(08): 72-77. |
[15] | 马燕, 张克玉. 分数阶微分方程边值问题非平凡解的存在性[J]. 山东大学学报(理学版), 2015, 50(05): 68-73. |
|