您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (6): 78-84.doi: 10.6040/j.issn.1671-9352.0.2015.632

• • 上一篇    下一篇

含参数及p-Laplacian算子的奇异分数阶微分方程积分边值问题的正解

仲秋艳1,张兴秋2,3   

  1. 1.济宁医学院信息技术中心, 山东 济宁 272067;2.济宁医学院医学信息工程学院, 山东 日照 276826;3.聊城大学数学科学学院, 山东 聊城 252059
  • 收稿日期:2015-12-29 出版日期:2016-06-20 发布日期:2016-06-15
  • 作者简介:仲秋艳(1973— ),女,硕士,实验师,研究方向为微分方程理论及应用. E-mail:zhqy197308@163.com
  • 基金资助:
    济宁医学院科技计划(JY2015KJ019,JYQ14KJ06,JY2015BS07);国家自然科学基金资助项目(11371221,11571197,11571296);山东省自然科学基金(ZR2015AL002);山东省高校科技发展计划(J15LI16)

Positive solutions for some singular fractional differential equation integral boundary value problems with p-Laplacian and a parameter

ZHONG Qiu-yan1, ZHANG Xing-qiu2,3   

  1. 1. Department of Information Technology, Jining Medical College, Jining 272067, Shandong, China;
    2. School of Medical Information Engineering, Jining Medical College, Rizhao 276826, Shandong, China;
    3. School of Mathematics, Liaocheng University, Liaocheng 252059, Shandong, China
  • Received:2015-12-29 Online:2016-06-20 Published:2016-06-15

摘要: 利用Green函数的性质构造出合适的锥,引入适当的高度函数并考虑高度函数在锥中某些有界集合上的积分,研究一类具有p-Laplacian算子的非线性奇异分数阶微分方程积分边值问题的局部正解以及多个局部正解。非线性项f允许关于时间和空间变量具有奇异性。

关键词: 奇异性, p-Laplacian算子, 分数阶微分方程, 高度函数

Abstract: A special cone is constructed by means of the properties of Green function. By introducing height functions of the nonlinear term on some bounded sets and considering integrations of these height functions, several existence and multiplicity of local positive solutions theorems for some nonlinear fractional differential equation integral boundary value problems with p-Laplacian and a parameter are obtained. The nonlinear term f permits singularities with respect to both the time and space variables.

Key words: fractional differential equation, singularity, p-Laplacian, height functions

中图分类号: 

  • O175.8
[1] SAMKO S G, KILBAS A A, MARICHEV O I. Fractional integral and derivative, in: theory and applications[M]. Switzerland: Gordon and Breach Science Publishers, 1993.
[2] PODLUBNY I. Fractional differential equations, mathematics in science and engineering[M]. San Diego: Academic Press, 1999.
[3] 郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解[M]. 北京: 科学出版社, 2011. GUO Boling, PU Xueke, HUANG Fenghui. Fractional partial differential equations and their numerical solutions[M]. Beijing: Science Press, 2011.
[4] AHMAD B, NTOUYAS S K. Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions[J]. Appl Math Comput, 2015, 266:615-622.
[5] WANG Guotao. Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval[J]. Appl Math Lett, 2015, 47:1-7.
[6] ZHANG Xingqiu, WANG Lin, SUN Qian. Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter[J]. Appl Math Comput, 2014, 226:708-718.
[7] HENDERSON J, LUCA R. Positive solutions for a system of fractional differential equations with coupled integral boundary conditions[J]. Appl Math Comput, 2014, 249:182-197.
[8] WANG Yongqing, LIU Lishan, WU Yonghong. Positive solutions for a nonlocal fractional differential equation[J]. Nonlinear Anal, 2011, 74:3599-3605.
[9] JIA Mei, LIU Xiping. Three nonnegative solutions for fractional differential equations with integral boundary conditions[J]. Comput Math Appl, 2011, 62:1405-1412.
[10] ZHANG Xingqiu. Positive solutions for singular higher-order fractional differential equations with nonlocal conditions[J]. J Appl Math Comput, 2015, 49:69-89.
[11] JIANG Weihua. Solvability of fractional differential equations with p-Laplacian at resonance[J]. Appl Math Comput, 2015, 260:48-56.
[12] HAN Zhenlai, LU Hongling, ZHANG Chao. Positive solutions for eigenvalue problems of fractional differential equation with generalized p-Laplacian[J]. Appl Math Comput, 2015, 257:526-536.
[13] YAO Qingliu. Local existence of multiple positive solutions to a singular cantilever beam equation[J]. J Math Anal Appl, 2010, 363:138-154.
[14] YAO Qingliu. Positive solutions of nonlinear beam equations with time and space singularities[J]. J Math Anal Appl, 2011, 374:681-692.
[15] ZHANG Xingqiu. Positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions[J]. Appl Math Lett, 2015, 39:22-27.
[16] GUO Dajun, LAKSHMIKANTHAM V. Nonlinear problems in abstract cones[M]. San Diego: Academic Press, 1988.
[1] 张迪,刘文斌. p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80.
[2] 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57.
[3] 苏小凤,贾梅,李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8): 66-73.
[4] 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88.
[5] 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48.
[6] 杨浩, 刘锡平, 吴贵云. 一类分数阶p-Laplace算子微分方程非局部边值问题解的存在性[J]. 山东大学学报(理学版), 2015, 50(04): 56-62.
[7] 郑春华, 刘文斌. 一类具有时滞的分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2015, 50(03): 73-79.
[8] 陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿. 小波法求解分数阶微分方程组及其收敛性分析[J]. 山东大学学报(理学版), 2015, 50(02): 67-74.
[9] 周文学1,2, 刘海忠1. 一类分数阶微分方程边值问题解的存在性[J]. J4, 2013, 48(8): 45-49.
[10] 李凡凡,刘锡平*,智二涛. 分数阶时滞微分方程积分边值问题解的存在性[J]. J4, 2013, 48(12): 24-29.
[11] 方海琴,刘锡平*,林乐刚. 分数阶微分方程反周期边值问题解的存在性[J]. J4, 2012, 47(6): 5-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!