您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (12): 67-71.doi: 10.6040/j.issn.1671-9352.0.2017.174

• • 上一篇    下一篇

局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近

黄爱玲,林帅   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2017-04-20 出版日期:2017-12-20 发布日期:2017-12-22
  • 作者简介:黄爱玲(1991— ), 女, 硕士研究生, 研究方向为随机分析. E-mail:1391106714@qq.com

Finite dimensional approximation of linear stochastic Schrödinger equation in terms of localization of quantum Bernoulli noises

HUANG Ai-ling, LIN Shuai   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2017-04-20 Online:2017-12-20 Published:2017-12-22

摘要: 局部量子Bernoulli噪声是局部的湮灭算子和增生算子族,满足局部等时典则反交换关系。考虑局部量子Bernoulli噪声意义下的线性随机Schrödinger方程,讨论了其解的存在唯一性,先验估计以及有限维逼近问题。

关键词: 线性随机Schrö, 局部量子Bernoulli噪声, 有限维逼近, dinger方程, 先验估计

Abstract: Local quantum Bernoulli noise is the family of local annihilation and creation operators, which is localization of quantum Bernoulli noise and satisfies a local canonical anti-communication relation in equal time. A linear stochastic Schrödinger equation in terms of local quantum Bernoulli noise is considered. The existence and uniqueness of a solution to the equation, its priori estimates as well as its finite dimensional approximation are discussed.

Key words: priori estimates, rate of convergence, local quantum Bernoulli noise, stochastic Schrö, numerical solution, dinger equation

中图分类号: 

  • O211.4
[1] BARCHIELLI A, HOLEVO A S. Constructing quantum measurement processes via classical stochastic calculus[J]. Stochastic Processes and their Applications, 1995, 58(2):293-317.
[2] BARCHIELLI A, PAGANONI A M, ZUCCA F. On stochastic differential equations and semigroups of probability operators in quantum probability[J]. Stochastic Processes and their Applications, 1998, 73(1):69-86.
[3] HOLEVO A S. On dissipative stochastic equations in a Hilbert space[J]. Probability Theory and Related Fields, 1996, 104(4):483-500.
[4] MORA C M. Numerical simulation of stochastic evolution equations associated to quantum markov semigroups[J]. Mathematics of Computation, 2004, 73(247):1393-1415.
[5] MORA C M, REBOLLEDO R. Regularity of solutions to linear stochastic Schrödinger equations[J]. Infinite dimensional analysis, quantum probability and related topics, 2007, 10(2):237-259.
[6] CHEN Jinshu, WANG Caishi. Linear stochastic Schrödinger equations in terms of quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2017, 58(5):1-12.
[7] WANG Caishi, ZHANG Jihong. Localization of quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2013, 54(10):103502-103509.
[8] WANG Caishi, CHAI Huifang, LU Yanchun. Discrete-time quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2010, 51(5):8.
[9] PRIVAULT N. Stochastic analysis of Bernoulli processes[J]. Probability Surveys, 2008, 5:435-483.
[10] KIST Tarso B L, ORSZAG M, BRUN T A, et al. Stochastic Schrödinger equations in cavity QED: physical interpretation and localization[J]. Journal of Optics B, 1999, 1(2):251-263.
[11] PERCIVAL I. Quantum state diffusion[M]. Cambridge: Cambridge University Press, 1998.
[1] 董亚莹. 一类空间退化的捕食-食饵模型的全局分歧结构[J]. 山东大学学报(理学版), 2018, 53(4): 76-84.
[2] 王萍莉, 石东洋. Schrödinger方程双线性元的 超收敛分析和外推[J]. 山东大学学报(理学版), 2014, 49(10): 66-71.
[3] 张路寅,张玉海,钱坤明. 关于不适定问题的迭代Tikhonov正则化方法[J]. J4, 2011, 46(4): 29-33.
[4] 姜良站,李艳玲*. 一类具有常数避难所的捕食-食饵模型非常数正解的存在性[J]. J4, 2011, 46(2): 15-21.
[5] 陆瑶1,李德生2,杨洋1. 非线性SchrÖdinger方程的Fourier谱逼近[J]. J4, 2011, 46(1): 119-126.
[6] 王娟1,刘辉昭2. 一类抛物型Monge-Ampère方程具Neumann边界条件的初边值问题[J]. J4, 2010, 45(6): 70-73.
[7] 别群益. 具避难所的捕食-食饵模型非常数正解的存在性[J]. J4, 2009, 44(3): 50-55 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!