山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (8): 66-73.doi: 10.6040/j.issn.1671-9352.0.2015.352
苏小凤,贾梅*,李萌萌
SU Xiao-feng, JIA Mei*, LI Meng-meng
摘要: 研究了一类共振条件下分数阶微分方程积分边值问题解的存在性。利用重合度理论,在dim Ker L=2时,建立并证明了边值问题解的存在性定理。
中图分类号:
[1] 郑祖庥. 分数微分方程的发展和应用[J]. 徐州师范大学学报:自然科学版,2008, 26(2):1-10. ZHENG Zuxiu. The development and application of fractional differential equation[J]. Journall of Xuzhou Normal University: Natural Science Edition, 2008, 26(2):1-10. [2] ZHANG Xuemei, FENG Meiqiang, GE Weigao. Existence result of second-order differential equations with integral boundary condition at resonance[J]. J Math Anal Appl, 2009, 353(1):311-319. [3] BAI Zhangbing, ZHANG Yinhan. The existence of solutions for a fractional multi-point boundary value problem[J]. Comput Math Appl, 2010, 60(8):2364-2372. [4] 沈立, 刘锡平, 卢振花. 共振条件下三阶三点边值问题解的存在性[J]. 上海理工大学学报, 2010, 32(1):69-72. SHEN Li, LIU Xiping, LU Zhenhua. Existence of solutions for third-order three-point boundary value problems at resonance[J]. Journal of University of Shanghai for Science and Technology, 2010, 32(1):69-72. [5] GUPTA C P. A second order m-point boundary value problem at resonance[J]. Nonlinear Anal, 1995, 24(10):1483-1489. [6] LIU Bing. Solvability of multi-point boundary problem at resonance(II)[J]. Appl Math Comput, 2003, 136(2-3):353-377. [7] LIU Hongliang, OUYANG Zigen. Existence of solutions for second-order three-point integral boundary value problems at resonance[J]. Bound Value Probl, 2013, 2013:197. [8] ZHANG Shuqing, HU Lei, SHI Ailing. Existence result for a nonlinear fractional differential equation with integral boundary conditions at resonance[J]. Adv Difference Equ, 2013, 2013:353. [9] JIANG Weihua. Solvability for fractional differential equations at resonance on the half line[J]. Appl Math Comput, 2014, 247:90-99. [10] BAI Zhanbing, ZHANG Yinghan, Solvability of fractional three-point boundary value problems with nonlinear growth[J]. Appl Math Comput, 2011, 218(5):1719-1725. [11] 白占兵. 分数阶微分方程边值问题理论及应用[M]. 北京: 科学技术出版社, 2012. BAI Zhanbing. Theory and applications of fractional differential equations boundary value problems[M]. Beijing: Science and Technology Press, 2012. [12] 杨浩, 刘锡平, 吴贵云. 一类分数阶p-Laplace 算子微分方程非局部边值问题解的存在性[J]. 山东大学学报(理学版),2014, 50(4):57-62. YANG Hao, LIU Xiping, WU Guiyun. Existence of solutions for a class of nonlocal boundary value problem for fractional differential equations with p-Laplacian[J]. Journal of Shandong University(Natural Science), 2014, 50(4):57-62. [13] 李凡凡, 刘锡平, 智二涛. 分数阶时滞微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版),2013, 48(12):24-29. LI Fanfan, LIU Xiping, ZHI Ertao. Existence of solutions for fractional delay differential equations with integral boundary conditions[J]. Journal of Shandong University(Natural Science), 2013, 48(12):24-29. [14] 刘帅, 贾梅, 秦小娜. 带积分边值条件的分数阶微分方程解的存在性与唯一性[J]. 上海理工大学学报, 2014, 36(5):409-415. LIU Shuai, JIA Mei, QIN Xiaona. Existence and uniqueness of solutions for fractional differential equations with integral boundary conditions[J]. Journal of University of Shanghai for Science and Technology, 2014, 36(5):409-415. [15] PODLUBNY I. Fraction differential equations[M]. New York: Acad Press, 1999. [16] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equation[M]. Netherlands: Elsevier Science, 2006. [17] 郭大钧, 孙经先, 刘兆理. 非线性常微分方程泛函方法[M]. 2版. 济南: 山东科学技术出版社, 2006. GUO Dajun, SUN Jingxian, LIU Zhaoli. Functional methods for nonlinear ordinary differential equations[M]. 2nd ed. Jinan: Shandong Science and Technology Press, 2006. |
[1] | 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31. |
[2] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[3] | 张迪,刘文斌. 带p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80. |
[4] | 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57. |
[5] | 仲秋艳,张兴秋. 含参数及p-Laplacian算子的奇异分数阶微分方程积分边值问题的正解[J]. 山东大学学报(理学版), 2016, 51(6): 78-84. |
[6] | 苏艳. 共振离散二阶Neumann问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 37-41. |
[7] | 陈彬,Abuelgasimalshaby Elzebir. 共振条件下的二阶多点边值问题解的存在性和多解性[J]. 山东大学学报(理学版), 2016, 51(4): 49-52. |
[8] | 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48. |
[9] | 杨浩, 刘锡平, 吴贵云. 一类分数阶p-Laplace算子微分方程非局部边值问题解的存在性[J]. 山东大学学报(理学版), 2015, 50(04): 56-62. |
[10] | 郑春华, 刘文斌. 一类具有时滞的分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2015, 50(03): 73-79. |
[11] | 陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿. 小波法求解分数阶微分方程组及其收敛性分析[J]. 山东大学学报(理学版), 2015, 50(02): 67-74. |
[12] | 周文学1,2, 刘海忠1. 一类分数阶微分方程边值问题解的存在性[J]. J4, 2013, 48(8): 45-49. |
[13] | 陈一鸣,孙慧,刘乐春,付小红. Legendre多项式求解变系数的分数阶Fredholm积分微分方程[J]. J4, 2013, 48(6): 80-86. |
[14] | 李凡凡,刘锡平*,智二涛. 分数阶时滞微分方程积分边值问题解的存在性[J]. J4, 2013, 48(12): 24-29. |
[15] | 秦小娜,贾梅*,刘帅. 具Caputo导数分数阶微分方程边值问题正解的存在性[J]. J4, 2013, 48(10): 62-67. |
|