山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (6): 73-77.doi: 10.6040/j.issn.1671-9352.0.2015.399
罗李平,罗振国,曾云辉
LUO Li-ping, LUO Zhen-guo, ZENG Yun-hui
摘要: 研究一类带阻尼项的拟线性双曲系统的(全)振动性, 利用新的处理拟线性扩散项及阻尼项的技巧, 建立了这类系统在第二类边值条件下每一个解(全)振动的几个新的充分性判据, 并通过一个例子加以阐明。所得结果反映了阻尼项在决定系统的(全)振动中所起的作用。
中图分类号:
[1] 李永昆. 具有偏差变元的双曲型微分方程组解的振动性[J]. 数学学报, 1997,40(1):100-105. LI Yongkun. Oscillation of systems of hyperbolic differential equations with deviating arguments[J]. Acta Mathematica Sinica, 1997, 40(1):100-105. [2] 关新平,杨军. 非线性中立型双曲偏泛函微分方程系统的振动性[J]. 系统科学与数学, 1998,18(2):239-246. GUAN Xinping, YANG Jun. Oscillation of systems of nonlinear hyperbolic partial functional differential equations of neutral type[J]. Journal of Systems Science and Mathematical Sciences, 1998, 18(2):239-246. [3] LI Weinan, CUI Baotong. Oscillation for systems of neutral delay hyperbolic differential equations[J]. Indian J Pure Appl Math, 2000, 31:933-948. [4] LI Weinan. Oscillation properties for systems of hyperbolic differential equationsof neutral type[J]. J Math Anal Appl, 2000, 248:369-384. [5] 邓立虎,葛渭高,俞元洪. 拟线性抛物泛微分方程组有关边值问题的振动性[J]. 应用数学学报, 2001,24(2):295-301. DENG Lihu, GE Weigao, YU Yuanhong. Oscillation of systems of quasilinear parabolic functional differential equations about boundary value problems[J]. Acta Mathematicae Applicatae Sinica, 2001, 24(2):295-301. [6] LI Weinan, CUI Baotong, DEBNATH L. Oscillation of systems of certain neutral delay parabolic differential equations[J]. J Appl Math Stochastic Anal, 2003, 16(1):83-94. [7] LI Weinan, MENG Fanwei. On the forced oscillation of systems of neutral parabolic differential equations with deviating arguments[J]. J Math Anal Appl, 2003, 288(1):20-27. [8] LI Weinan, MENG Fanwei. Forced oscillation for certain systems of hyperbolic differential equations[J]. Appl Math Comput, 2003, 141:313-320. [9] WANG Peiguang, WU Yonghong. Oscillation of solutions for systems of hyperbolic equations of neutral type[J]. Electronic of Differential Equations, 2004, 2004(80):1-8. [10] 李伟年,孟凡伟. 偏泛函微分方程系统解的强迫振动性[J]. 系统科学与数学, 2004,24(3):324-331. LI Weinian, MENG Fanwei. Forced oscillation for solutions of systems of partial functional differential equations[J]. Journal of Systems Science and Mathematical Sciences, 2004, 24(3):324-331. [11] MINCHEV E. Forced oscillations of solutions of systems of hyperbolic equations of neutral type[J]. Appl Math Comput, 2004, 155(2):427-438. [12] 林文贤. 关于高阶中立型偏微分方程系统解的振动性[J]. 应用数学学报, 2005,28(3):571-573. LIN Wenxian. On the oscillation of solutions of systems of high order partial functional differential equations of neutral type[J]. Acta Mathematicae Applicatae Sinica, 2005, 28(3):571-573. [13] DENG Lihu, MU Chunlai. Oscillation of solutions of the systems of quasilinear hyperbolic equations under nonlinear boundary condition[J]. Acta Math Scientia, 2007, 27B(3):656-662. [14] 罗李平,曾云辉,罗振国. 具脉冲和时滞效应的拟线性双曲系统的振动性定理[J]. 应用数学学报, 2014,37(5):824-834. LUO Liping, ZENG Yunhui, LUO Zhenguo. Oscillation theorems of quasilinear hyperbolic systems with effect of impulse and delay[J]. Acta Mathematicae Applicatae Sinica, 2014, 37(5):824-834. [15] 罗李平,罗振国,曾云辉. 带脉冲效应的拟线性双曲系统(强)振动性分析[J].山东大学学报(理学版), 2015,50(3):57-61. LUO Liping, LUO Zhenguo, ZENG Yunhui.(Strong)oscillation analysis of quasilinear hyperbolic systems with impulse effect[J]. Journal of Shandong University(Natural Science), 2015, 50(3):57-61. |
[1] | 董莉. 两类非线性波动方程解的爆破时间的下确界[J]. 山东大学学报(理学版), 2017, 52(4): 56-60. |
[2] | 罗李平, 罗振国, 曾云辉. 带脉冲效应的拟线性双曲系统(强)振动性分析[J]. 山东大学学报(理学版), 2015, 50(03): 57-61. |
[3] | 高正晖,罗李平. 含分布时滞与阻尼项的三阶非线性微分方程的Philos型振动[J]. J4, 2013, 48(4): 85-90. |
[4] | 曾云辉. 具非线性扩散系数的二阶中立型阻尼偏微分方程解的振动性[J]. J4, 2010, 45(2): 66-69. |
[5] | 曾云辉. 具高阶Laplace算子的偶数阶阻尼偏微分方程解的振动准则[J]. J4, 2010, 45(12): 78-82. |
|