您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (6): 73-77.doi: 10.6040/j.issn.1671-9352.0.2015.399

• • 上一篇    下一篇

一类带阻尼项的拟线性双曲系统的(全)振动性问题

罗李平,罗振国,曾云辉   

  1. 衡阳师范学院数学与统计学院, 湖南 衡阳 421002
  • 收稿日期:2015-08-24 出版日期:2016-06-20 发布日期:2016-06-15
  • 作者简介:罗李平(1964— ), 男, 教授, 研究方向为(脉冲)偏微分系统解的性态. E-mail:luolp3456034@163.com
  • 基金资助:
    湖南省“十二五”重点建设学科资助项目(湘教发[2011]76号);湖南省自然科学基金青年资助项目(13JJ4098);湖南省自然科学基金面上项目(2016JJ2008)

(Full)oscillatory problems of certain quasilinear hyperbolic systems with damping term

LUO Li-ping, LUO Zhen-guo, ZENG Yun-hui   

  1. College of Mathematics and Statistics, Hengyang Normal University, Hengyang 421002, Hunan, China
  • Received:2015-08-24 Online:2016-06-20 Published:2016-06-15

摘要: 研究一类带阻尼项的拟线性双曲系统的(全)振动性, 利用新的处理拟线性扩散项及阻尼项的技巧, 建立了这类系统在第二类边值条件下每一个解(全)振动的几个新的充分性判据, 并通过一个例子加以阐明。所得结果反映了阻尼项在决定系统的(全)振动中所起的作用。

关键词: 拟线性扩散项, 双曲系统, (全)振动性, 阻尼项

Abstract: The(full)oscillation for a class of quasilinear hyperbolic systems with damping term are investigated. By using a new technique of treating quasilinear diffusion term and damping term, some new sufficient criteria for the(full)oscillation of each solution of such systems are established under second boundary value condition, which are illustrated by a example. The results obtained reflect the functions that damping term acts in determining the(full)oscillation of system.

Key words: (full)oscillation, quasilinear diffusion term, hyperbolic system, damping term

中图分类号: 

  • O175.27
[1] 李永昆. 具有偏差变元的双曲型微分方程组解的振动性[J]. 数学学报, 1997,40(1):100-105. LI Yongkun. Oscillation of systems of hyperbolic differential equations with deviating arguments[J]. Acta Mathematica Sinica, 1997, 40(1):100-105.
[2] 关新平,杨军. 非线性中立型双曲偏泛函微分方程系统的振动性[J]. 系统科学与数学, 1998,18(2):239-246. GUAN Xinping, YANG Jun. Oscillation of systems of nonlinear hyperbolic partial functional differential equations of neutral type[J]. Journal of Systems Science and Mathematical Sciences, 1998, 18(2):239-246.
[3] LI Weinan, CUI Baotong. Oscillation for systems of neutral delay hyperbolic differential equations[J]. Indian J Pure Appl Math, 2000, 31:933-948.
[4] LI Weinan. Oscillation properties for systems of hyperbolic differential equationsof neutral type[J]. J Math Anal Appl, 2000, 248:369-384.
[5] 邓立虎,葛渭高,俞元洪. 拟线性抛物泛微分方程组有关边值问题的振动性[J]. 应用数学学报, 2001,24(2):295-301. DENG Lihu, GE Weigao, YU Yuanhong. Oscillation of systems of quasilinear parabolic functional differential equations about boundary value problems[J]. Acta Mathematicae Applicatae Sinica, 2001, 24(2):295-301.
[6] LI Weinan, CUI Baotong, DEBNATH L. Oscillation of systems of certain neutral delay parabolic differential equations[J]. J Appl Math Stochastic Anal, 2003, 16(1):83-94.
[7] LI Weinan, MENG Fanwei. On the forced oscillation of systems of neutral parabolic differential equations with deviating arguments[J]. J Math Anal Appl, 2003, 288(1):20-27.
[8] LI Weinan, MENG Fanwei. Forced oscillation for certain systems of hyperbolic differential equations[J]. Appl Math Comput, 2003, 141:313-320.
[9] WANG Peiguang, WU Yonghong. Oscillation of solutions for systems of hyperbolic equations of neutral type[J]. Electronic of Differential Equations, 2004, 2004(80):1-8.
[10] 李伟年,孟凡伟. 偏泛函微分方程系统解的强迫振动性[J]. 系统科学与数学, 2004,24(3):324-331. LI Weinian, MENG Fanwei. Forced oscillation for solutions of systems of partial functional differential equations[J]. Journal of Systems Science and Mathematical Sciences, 2004, 24(3):324-331.
[11] MINCHEV E. Forced oscillations of solutions of systems of hyperbolic equations of neutral type[J]. Appl Math Comput, 2004, 155(2):427-438.
[12] 林文贤. 关于高阶中立型偏微分方程系统解的振动性[J]. 应用数学学报, 2005,28(3):571-573. LIN Wenxian. On the oscillation of solutions of systems of high order partial functional differential equations of neutral type[J]. Acta Mathematicae Applicatae Sinica, 2005, 28(3):571-573.
[13] DENG Lihu, MU Chunlai. Oscillation of solutions of the systems of quasilinear hyperbolic equations under nonlinear boundary condition[J]. Acta Math Scientia, 2007, 27B(3):656-662.
[14] 罗李平,曾云辉,罗振国. 具脉冲和时滞效应的拟线性双曲系统的振动性定理[J]. 应用数学学报, 2014,37(5):824-834. LUO Liping, ZENG Yunhui, LUO Zhenguo. Oscillation theorems of quasilinear hyperbolic systems with effect of impulse and delay[J]. Acta Mathematicae Applicatae Sinica, 2014, 37(5):824-834.
[15] 罗李平,罗振国,曾云辉. 带脉冲效应的拟线性双曲系统(强)振动性分析[J].山东大学学报(理学版), 2015,50(3):57-61. LUO Liping, LUO Zhenguo, ZENG Yunhui.(Strong)oscillation analysis of quasilinear hyperbolic systems with impulse effect[J]. Journal of Shandong University(Natural Science), 2015, 50(3):57-61.
[1] 董莉. 两类非线性波动方程解的爆破时间的下确界[J]. 山东大学学报(理学版), 2017, 52(4): 56-60.
[2] 罗李平, 罗振国, 曾云辉. 带脉冲效应的拟线性双曲系统(强)振动性分析[J]. 山东大学学报(理学版), 2015, 50(03): 57-61.
[3] 高正晖,罗李平. 含分布时滞与阻尼项的三阶非线性微分方程的Philos型振动[J]. J4, 2013, 48(4): 85-90.
[4] 曾云辉. 具非线性扩散系数的二阶中立型阻尼偏微分方程解的振动性[J]. J4, 2010, 45(2): 66-69.
[5] 曾云辉. 具高阶Laplace算子的偶数阶阻尼偏微分方程解的振动准则[J]. J4, 2010, 45(12): 78-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!