您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (10): 89-96.doi: 10.6040/j.issn.1671-9352.0.2017.021

• • 上一篇    下一篇

伪黎曼空间型中具有常数量曲率的类空子流形

文海燕,刘建成   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2017-01-23 出版日期:2017-10-20 发布日期:2017-10-12
  • 作者简介:文海燕(1992— ), 女, 硕士研究生, 研究方向为微分几何. E-mail:wenhy1992@foxmail.com
  • 基金资助:
    国家自然科学基金资助项目(11261051)

Space-like submanifolds with constant scalar curvature in the pseudo-Riemannian space forms

WEN Hai-yan, LIU Jian-cheng   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2017-01-23 Online:2017-10-20 Published:2017-10-12

摘要: 设M n是伪黎曼空间型N n+pq(c)(1≤q≤p)中具有常数量曲率R的n维完备类空子流形。 假定M n在N n+pq(c)中的第二基本形式是局部类时的情况下, 应用Simons型不等式以及Cheng-Yau引进的二阶微分算子, 得到了M n的一个刚性结果。

关键词: 伪黎曼空间型, 类空子流形, 第二基本形式, 常数量曲率

Abstract: Let M n be a space-like submanifold immersed in a pseudo-Riemannian space form N n+pq(c) with constant scalar curvature. Assume the second fundamental form of M n in N n+pq(c) is locally time-like, by applying Simons inequality and Cheng-Yau modified operator, a rigidity theorem of M n is obtained.

Key words: pseudo-Riemannian space form, space-like submanifold, constant scalar curvature, the second fundamental form

中图分类号: 

  • O186.12
[1] GODDARD A J. Some remarks on the existence of space-like hypersurfaces of constant mean curvature[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1977, 82(3):489-495.
[2] AKUTAGAWA K. On space-like hypersurfaces with constant mean curvature in the de Sitter space[J]. Mathematische Zeitschrift, 1987, 196(1):13-19.
[3] MONTIEL S. An integral inequality for compact space-like hypersurfaces in de Sitter space and applications to the case of constant mean curvature[J]. Indiana University Mathematics Journal, 1988, 37(4):909-917.
[4] SHU Shichang, LIU Sanyang. Complete space-like hypersurfaces with constant scalar curvature in de Sitter spaces[J]. Balkan Journal of Geometry and its Appliations, 2004, 9(2):82-91.
[5] CAMINHA A. A rigidity theorem for complete CMC hypersurfaces in Lorentz manifolds[J]. Differential Geometry and its Applications, 2006, 24(6):652-659.
[6] SHU Shichang, CAO Juanjuan. Curvature and rigidity of complete space-like submanifolds in a de Sitter space[J]. International Mathematical Forum, 2010, 5(4):175-184.
[7] LIU Ximin. Space-like submanifolds in the de Sitter spaces[J]. Journal of Geometry and Physics, 2002, 40(3):370-378.
[8] CHENG Qingming, ISHIKAWA S. Complete maximal spacelike submanifolds[J]. Kodai Mathematical Journal, 1997, 20(3):208-217.
[9] ZHANG Shicheng. Rigidity theorem for complete spacelike submanifold in Sn+pq(1)with constant scalar curvature[J]. Bulletin of the Belgian Mathematical Society. Simon Stevin, 2012, 19(4):733-746.
[10] ZHANG Shicheng. Rigidity theorems for complete spacelike submanifold in Sn+pq(1)[J]. Geometriae Dedicata, 2014, 169(1):175-186.
[11] MARIANO M. On complete spacelike submanifolds with second fundamental form locally timelike in a semi-Riemannian space form[J]. Journal of Geometry and Physics, 2010, 60(5):720-728.
[12] 周俊东, 宋卫东, 徐传友. 关于de Sitter空间中类空子流形的一些刚性定理[J]. 纯粹数学与应用数学, 2012, 28(1):73-79. ZHOU Jundong, SONG Weidong, XU Chuanyou. Rigity theorems on space-like submanifolds in de Sitter spaces[J]. Pure and Applied Mathematics, 2012, 28(1):73-79.
[13] SANTOS W. Submanifolds with parallel mean curvature vector in spheres[J]. Tohoku Mathematical Journal, 1994, 46(3):403-415.
[14] CHENG Shiuyuen, YAU Shingtung. Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces[J]. Annals of Mathematics, 1976, 104(3):407-419.
[15] CAMARGO F E C, CHAVES R M B, DE SOUSA JR L A M. New characterizations of complete spacelike submanifolds in semi-Riemannian space forms[J]. Kodai Mathematical Journal, 2009, 32(2):209-230.
[1] 苏曼,张量. 关于伪黎曼空间形式中类空子流形Chen不等式的两个结果[J]. 山东大学学报(理学版), 2016, 51(10): 59-64.
[2] 齐邦交. de Sitter空间中具有平行单位平均曲率向量的完备类空子流形[J]. J4, 2011, 46(12): 83-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!