您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (10): 97-103.doi: 10.6040/j.issn.1671-9352.0.2016.405

• • 上一篇    下一篇

拓扑效应代数

张巧卫1,郭志华2,曹怀信2   

  1. 1.榆林学院数学与统计学院, 陕西 榆林 719000;2.陕西师范大学数学与信息科学学院, 陕西 西安 710119
  • 收稿日期:2016-09-02 出版日期:2017-10-20 发布日期:2017-10-12
  • 作者简介:张巧卫(1983— ),女,副教授, 研究方向为量子信息与算子代数. E-mail:zhangqiaowei1188@sohu.com
  • 基金资助:
    国家自然科学基金资助项目(11501496);陕西省自然科学基础研究计划项目(2014JQ2-1003)

Topological effect algebras

ZHANG Qiao-wei1, GUO Zhi-hua2, CAO Huai-xin2   

  1. 1. Department of Mathematics and Statistics, Yulin University, Yulin 719000, Shaanxi, China;
    2. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Received:2016-09-02 Online:2017-10-20 Published:2017-10-12

摘要: 在一些经典效应代数上引入了拓扑结构,使其成为拓扑效应代数,证明了两个拓扑效应代数的直和仍是拓扑效应代数, 拓扑效应代数的模糊集系统仍是拓扑效应代数。 给出了拓扑效应代数上连续映射的定义, 并研究了拓扑效应代数上态射(单调态射、同构)的连续性, 证明了从一个拓扑效应代数到另一个拓扑效应代数的全体连续映射之集仍是拓扑效应代数。

关键词: 拓扑效应代数, 连续映射, 态射

Abstract: Topological structure is introduced on some classic effect algebras, and so the effect algebras become topological effect algebras. We prove that the direct sum of two topological effect algebras is still topological effect algebra, and the fuzzy system of topological effect algebra is still topological effect algebra. Continious map between topological effect algebras are given, and the continuity of morphisms, monomorphisms and isomorphic are discussed. Finally, it is proved that the set of all continious maps from a topological effect algebra to another is also a topological effect algebra.

Key words: topological effect algebras, morphism, continuous map

中图分类号: 

  • O177.1
[1] FOULIS D J, BENNETT M K. Effect algebra and unsharp quantum logics[J]. International Journal of Theoretical Physics, 1994, 24(10):1325-1346.
[2] GUDDER S, GREECHIE R. Sequential products on effect algebras[J]. Reports on Mathematical Physics, 2002, 49(1):87-111.
[3] GUDDER S, GREECHIE R. Uniqueness and order in sequential effect algebras[J]. International Journal of Theoretical Physics, 2005, 44(7):755-770.
[4] GUDDER S, LATRMOLIRE F. Characterization of the sequential product on quantum effects[J]. Journal of Mathematical Physics, 2008, 49:1-7.
[5] 张巧卫. 对偶序列效应代数的研究[J]. 河南科学,2016,34(4):463-466. ZHANG Qiaowei. Research on dual sequential effect algebras[J]. Henan Science, 2016, 34(4):463-466.
[6] 陆玲, 曹怀信, 陈峥立, 等. 效应代数上态射的注记[J]. 数学学报, 2009, 52(5):957-960. LU Ling, CAO Huaixin, CHEN Zhengli, et al. A note on morphisms on effect algebras[J]. Acta Mathematica Sinica, 2009, 52(5):957-960.
[7] 张坤利,曹怀信,郭志华.效应代数上态的存在性[J].数学学报, 2013,56(3):301-310. ZHANG Kunli, CAO Huaixin, GUO Zhihua. Existence of states of effect algebras[J]. Acta Mathematica Sinica, 2013, 56(3):301-310.
[8] 张巧卫,曹怀信,陆玲. 效应代数的表示及弱表示[J]. 西北大学学报(自然科学版),2012,42(2):198-202. ZHANG Qiaowei, CAO Huaixin, LU Ling. Representation and weak representation of effect algebras[J]. Journal of Northwest University(Natural Science Edition), 2012, 42(2):198-202.
[9] 曹怀信,郭志华,陈峥立,等.效应代数的表示[J]. 中国科学(数学),2011,41(3):279-286. CAO Huaixin, CHEN Zhengli, GUO Zhihua, et al. Representations of effect algebras[J]. Scientia Sinica(Math), 2011, 41(2):279-286.
[10] 曹怀信,郭志华,陈峥立,等.效应代数的表示理论[J]. 中国科学(数学), 2013,43(8):835-846. CAO Huaixin, GUO Zhihua, CHEN Zhengli, et al. Representation theory of effect algebras[J]. Scientia Sinica(Math), 2013, 43(8):835-846.
[11] MA Zhihao, ZHU Sen. Topologies on quantum effects[J]. Reports on Mathematical Physics, 2008, 64(3):429-439.
[12] QU Wenbo, WU Junde. Continuity of effect algebra operations in the interval topology[J]. International Journal of Theoretical Physics, 2004, 43(11):2311-2317.
[13] LEI Qiang, WU Junde, LI Ronglu. Order topology and frink ideal topology on effect algebras[J]. International Journal of Theoretical Physics, 2010, 49(12):3166-3175.
[14] MA Zhihao, WU Junde, LU Shijie. Ideal topology on effect algebras[J]. International Journal of Theoretical Physics, 2004, 43:223-234.
[15] WU Junde, TANG Zhifeng, CHO Minhyung. Two variables operation continuity of effect algebras[J]. International Journal of Theoretical Physics, 2005, 44(5):581-586.
[16] MA Zhihao, WU Junde, LU Shijie. Ideal topology on effect algebras[J]. International Journal of Theoretical Physics, 2004, 43:2319-2323.
[17] ZHU Sen, MA Zhihao. Interval topology on effect algebras[J]. Applied Mathematics Letters, 2012, 25:631-635.
[18] 雷强. 量子逻辑的内蕴拓扑[D].哈尔滨:哈尔滨工业大学, 2008. LEI Qiang. The intrinsic topology of quantum logics[D]. Harbin: Harbin Institute of Technology, 2008.
[19] LEI Qiang, SU Xiaochao, WU Junde. Continuity of the sequential product of sequential quantum effect algebras[J]. Journal of Mathematical Physics, 2016, 57(4):1331-1352.
[1] 朱林. A4型箭图的可分单态射表示和RSS等价[J]. 山东大学学报(理学版), 2018, 53(2): 1-8.
[2] 苏玉,孔祥智*. LρC-正则半群[J]. J4, 2011, 46(4): 68-69.
[3] 贺晓丽1, 伏文清2. L-预拓扑空间的局部连通性:可乘性与L-好的推广[J]. J4, 2010, 45(10): 78-82.
[4] 刘开振 孔祥智. 半超富足半群的结构[J]. J4, 2010, 45(1): 86-88.
[5] 梁少辉 赵彬. FS-Poset 若干性质的研究[J]. J4, 2009, 44(8): 51-55.
[6] 于茸茸,李生刚.

具有分离性的预拓扑空间的范畴性质

[J]. J4, 2009, 44(4): 15-20 .
[7] 丁 月,孔祥智 . H#-富足半群[J]. J4, 2008, 43(4): 55-57 .
[8] 李 宁 . I-fuzzy拓扑空间中的准连续映射[J]. J4, 2007, 42(12): 42-45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!