您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (03): 62-66.doi: 10.6040/j.issn.1671-9352.0.2014.326

• 论文 • 上一篇    下一篇

非线性二阶Neumann边值问题的Ambrosetti-Prodi型结果

马陆一   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2014-07-15 修回日期:2014-11-07 出版日期:2015-03-20 发布日期:2015-03-13
  • 作者简介:马陆一(1991- ), 男, 硕士研究生, 研究方向为常微分方程边值问题.E-mail:maly0318@126.com
  • 基金资助:
    国家自然科学基金资助项目(11361054);甘肃省自然科学基金资助项目(1208RJZA258)

The Ambrosetti-Prodi type results of the nonlinear second-order Neumann boundary value problem

MA Lu-yi   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2014-07-15 Revised:2014-11-07 Online:2015-03-20 Published:2015-03-13

摘要: 研究了二阶Neumann边值问题

解的个数与参数s的关系, 其中fC([0,1]×R2,R), sR。运用上下解方法及拓扑度理论, 获得存在常数 s1R, 当s<s1时, 该问题没有解; s=s1时, 该问题至少有一个解; s>s1时, 该问题至少有两个解。

关键词: Ambrosetti-Prodi问题, 上下解方法, 拓扑度

Abstract: We study the relationship between s and the number of solutions of the second-order Neumann boundary value problem 

where fC([0,1]×R2,R), sR is a parameter. By using the method of the upper and lower solutions and topological degree techniques, we obtain that the problem has no solution, at least one solution and at least two solutions, when s<s1, s=s1, s>s1, respectively.

Key words: topological degree, upper and lower solutions, Ambrosetti-Prodi problem

中图分类号: 

  • O175.8
[1] AMBROSETTI A, PRODI G. On the inversion of some differentiable mappings with singularities between Banach spaces[J]. Ann Mat Pura Appl, 1972, 93:231-247.
[2] FABRY C, MAWHIN J, NKASHAMA M N. A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations[J]. Bull London Math Soc, 1986, 18(2):173-180.
[3] RACHUNKOVA I. Multiplicity results for four-point boundary value problems[J]. Nonlinear Analysis, 1992, 18:497-505.
[4] BEREANU C, MAWHIN J. Existence and multiplicity results for periodic solutions of nonlinear difference equations[J]. Journal of Difference Equations and Applications, 2006, 12:677-695.
[5] BEREANU C, MAWHIN J. Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian[J]. J Differential Equations, 2007, 243:536-557.
[6] GAO Chenghua. On the linear and nonlinear discrete second-order Neumann boundary value problems[J]. Applied Mathematics and Computation, 2014, 233:62-71.
[7] HUI Xing, CHEN Hongbin, HE Xibing. Exact multiplicity and stability of solutions of second-order Neumann boundary value problem[J]. Applied Mathematics and Computation, 2014, 232:1104-1111.
[8] CABADA A. A positive operator approach to the Neumann problem for a second-order ordinary differential equation[J]. J Math Anal Appl, 1996, 204:774-785.
[9] SUN Jianping, LI Wantong. Multiple positive solutions to second-order Neumann boundary value problems[J]. Applied Mathematics and Computation, 2003, 146:187-194.
[10] MANASEVICH R, MAWHIN J. Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators[J]. J Korean Math Soc, 2000, 37:665-685.
[11] RACHUNKOVA I. Upper and lower solutions and topological degree[J]. J Math Anal Appl, 1999, 234:311-327.
[1] 朱雯雯. 一阶多点边值问题多个解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 42-48.
[2] 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41.
[3] 张露,马如云. 渐近线性二阶半正离散边值问题正解的分歧结构[J]. 山东大学学报(理学版), 2014, 49(03): 79-83.
[4] 孙艳梅1,赵增勤2. 一类二阶奇异脉冲微分方程解的存在性[J]. J4, 2013, 48(6): 91-95.
[5] 杨春风. 一类三阶三点边值问题正解的存在性和不存在性[J]. J4, 2012, 47(10): 109-115.
[6] 黄玉梅,高德智,秦伟,董鑫 . 二阶四点边值问题的三解存在性[J]. J4, 2008, 43(6): 53-56 .
[7] 崔玉军,邹玉梅 . 拓扑度的计算及其对Banach空间中二阶三点边值问题的应用[J]. J4, 2008, 43(3): 84-86 .
[8] 邹玉梅 陶常利 崔玉军. 非线性算子的渐近歧点[J]. J4, 2008, 43(12): 20-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!