山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (03): 62-66.doi: 10.6040/j.issn.1671-9352.0.2014.326
马陆一
MA Lu-yi
摘要: 研究了二阶Neumann边值问题
解的个数与参数s的关系, 其中f∈C([0,1]×R2,R), s∈R。运用上下解方法及拓扑度理论, 获得存在常数 s1∈R, 当s<s1时, 该问题没有解; s=s1时, 该问题至少有一个解; s>s1时, 该问题至少有两个解。
中图分类号:
[1] AMBROSETTI A, PRODI G. On the inversion of some differentiable mappings with singularities between Banach spaces[J]. Ann Mat Pura Appl, 1972, 93:231-247. [2] FABRY C, MAWHIN J, NKASHAMA M N. A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations[J]. Bull London Math Soc, 1986, 18(2):173-180. [3] RACHUNKOVA I. Multiplicity results for four-point boundary value problems[J]. Nonlinear Analysis, 1992, 18:497-505. [4] BEREANU C, MAWHIN J. Existence and multiplicity results for periodic solutions of nonlinear difference equations[J]. Journal of Difference Equations and Applications, 2006, 12:677-695. [5] BEREANU C, MAWHIN J. Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian[J]. J Differential Equations, 2007, 243:536-557. [6] GAO Chenghua. On the linear and nonlinear discrete second-order Neumann boundary value problems[J]. Applied Mathematics and Computation, 2014, 233:62-71. [7] HUI Xing, CHEN Hongbin, HE Xibing. Exact multiplicity and stability of solutions of second-order Neumann boundary value problem[J]. Applied Mathematics and Computation, 2014, 232:1104-1111. [8] CABADA A. A positive operator approach to the Neumann problem for a second-order ordinary differential equation[J]. J Math Anal Appl, 1996, 204:774-785. [9] SUN Jianping, LI Wantong. Multiple positive solutions to second-order Neumann boundary value problems[J]. Applied Mathematics and Computation, 2003, 146:187-194. [10] MANASEVICH R, MAWHIN J. Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators[J]. J Korean Math Soc, 2000, 37:665-685. [11] RACHUNKOVA I. Upper and lower solutions and topological degree[J]. J Math Anal Appl, 1999, 234:311-327. |
[1] | 朱雯雯. 一阶多点边值问题多个解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 42-48. |
[2] | 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41. |
[3] | 张露,马如云. 渐近线性二阶半正离散边值问题正解的分歧结构[J]. 山东大学学报(理学版), 2014, 49(03): 79-83. |
[4] | 孙艳梅1,赵增勤2. 一类二阶奇异脉冲微分方程解的存在性[J]. J4, 2013, 48(6): 91-95. |
[5] | 杨春风. 一类三阶三点边值问题正解的存在性和不存在性[J]. J4, 2012, 47(10): 109-115. |
[6] | 黄玉梅,高德智,秦伟,董鑫 . 二阶四点边值问题的三解存在性[J]. J4, 2008, 43(6): 53-56 . |
[7] | 崔玉军,邹玉梅 . 拓扑度的计算及其对Banach空间中二阶三点边值问题的应用[J]. J4, 2008, 43(3): 84-86 . |
[8] | 邹玉梅 陶常利 崔玉军. 非线性算子的渐近歧点[J]. J4, 2008, 43(12): 20-23. |
|