您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (12): 42-46.doi: 10.6040/j.issn.1671-9352.0.2015.627

• • 上一篇    下一篇

一类具有p-Laplace算子的Hamilton系统周期解的存在性

万树园,王智勇*   

  1. 南京信息工程大学数学与统计学院, 江苏 南京 210044
  • 收稿日期:2015-12-29 出版日期:2016-12-20 发布日期:2016-12-20
  • 通讯作者: 王智勇(1979— ),男, 博士, 副教授, 研究方向为非线性泛函分析. E-mail: mathswzhy1979@gmail.com E-mail:mathswsy@126.com
  • 作者简介:万树园(1992— ),女, 硕士研究生, 研究方向为非线性泛函分析. E-mail: mathswsy@126.com
  • 基金资助:
    国家自然科学基金资助项目(11571176)

Existence of periodic solutions for a class of Hamiltonian systems with p-Laplace

  1. School of Mathematics and Statistics, Nanjing University of Information Science &
    Technology, Nanjing 210044, Jiangsu, China
  • Received:2015-12-29 Online:2016-12-20 Published:2016-12-20

摘要: 利用临界点理论中的极大极小方法, 引入一个新的控制函数, 研究了一类具有p-Laplace算子的Hamilton系统周期解的存在性, 根据鞍点定理, 得到了一些新的存在性结果。

关键词: p-Laplace系统, 鞍点定理, 周期解

Abstract: By introducing a new control function, the existence of periodic solutions for a class of Hamiltonian systems with p-Laplace by using the minimax methods in critical point theory is considered. Some new existence theorems are obtained via saddle point theorem.

Key words: periodic solutions, p-Laplacian systems, saddle point theorem

中图分类号: 

  • O175.12
[1] RABINOWITZ P H. On subharmonic solutions of Hamiltonian systems[J]. Communications on Pure and Applied Mathematics, 1980, 33(5): 609-633.
[2] JIANG Qin, TANG Chunlei. Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems[J]. Journal of Mathematical Analysis and Applications, 2007, 328(1): 380-389.
[3] WANG Zhiyong, XIAO Jianzhong. On periodic solutions of subquadratic second order non-autonomous Hamiltonian systems[J]. Applied Mathematics Letters, 2015, 40: 72-77.
[4] FEI Guihua. On periodic solutions of superquadratic Hamiltonian systems[J]. Electronic Journal of Differential Equations, 2002, 8: 1-12.
[5] WANG Zhiyong, ZHANG Jihui, ZHANG Zhitao. Periodic solutions of second order non-autonomous Hamiltonian systems with local superquadratic potential[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70(10): 3672-3681.
[6] MAWHIN J, WILLEM M. Critical point theory and Hamiltonian Systems[M]. New York: Springer-Verlag, 1989.
[7] RABINOWITZ P H. Minimax methods in critical point theory with applications to differential equations[M]. Rhode Island: American Mathematical Society, 1986.
[8] XU Bo, TANG Chunlei. Some existence results on periodic solutions of ordinary p-Laplacian systems[J]. Journal of Mathematical Analysis and Applications, 2007, 333(2): 1228-1236.
[9] MA Shiwang, ZHANG Yuxiang. Existence of infinitely many periodic solutions for ordinary p-Laplacian systems[J]. Journal of Mathematical Analysis and Applications, 2009, 351(1): 469-479.
[10] 黎丽, 陈凯, 张琼芬, 等. 一类具脉冲效应的p-Laplace系统周期解的存在性[J]. 数学的实践与认识, 2013, 43(5): 247-256. LI Li, CHEN Kai, ZHANG Qiongfen, et al. Periodic solutions for a class of p-laplacians systems with impulsive effects[J].Mathematics in Practice and Theory, 2013, 43(5): 247-256.
[1] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[2] 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88.
[3] 王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 52(1): 81-87.
[4] 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83.
[5] 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88.
[6] 徐嫚. 带双参数的脉冲泛函微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(06): 69-74.
[7] 卢拉拉,窦家维. 一类具有比例和常数脉冲收获的周期竞争系统周期解的存在性[J]. J4, 2012, 47(9): 98-104.
[8] 郭莹. 差分方程的伪概周期解[J]. J4, 2012, 47(2): 42-46.
[9] 黄祖达,彭乐群,徐敏. 论变时滞高阶细胞神经网络模型的反周期解[J]. J4, 2012, 47(10): 121-126.
[10] 陈新一. 高阶非线性中立型泛函微分方程周期解的存在性[J]. J4, 2011, 46(8): 47-51.
[11] 汪小明,梁晓斌. 一类不对称Duffing方程的Aubry-Mather集[J]. J4, 2011, 46(11): 59-63.
[12] 张申贵. 一类非自治二阶系统的多重周期解[J]. J4, 2011, 46(11): 64-69.
[13] 仇华海 姚云飞 王志刚 陈斯养. 非线性泛函微分系统的指数稳定[J]. J4, 2009, 44(9): 84-89.
[14] . 一类新的含有垂直传染与脉冲免疫的SIR传染病模型的定性分析[J]. J4, 2009, 44(5): 67-73.
[15] 陈新一. 二阶非线性泛函微分方程的周期解[J]. J4, 2009, 44(4): 47-50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!