您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (2): 32-37.doi: 10.6040/j.issn.1671-9352.0.2017.359

• • 上一篇    下一篇

四阶变指数椭圆方程Navier边值问题的多解性

张申贵   

  1. 西北民族大学数学与计算机科学学院, 甘肃 兰州 730030
  • 收稿日期:2017-07-19 出版日期:2018-02-20 发布日期:2018-01-31
  • 作者简介:张申贵(1980— ), 男, 博士, 副教授, 研究方向为偏微分方程. E-mail:zhangshengui315@163.com
  • 基金资助:
    甘肃省科技计划资助项目(1610RJZA102);中央高校基本科研专项经费资助项目(31920170147)

Multiple solutions of Navier boundary value problem for fourth-order elliptic equation with variable exponents

ZHANG Shen-gui   

  1. College of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, Gansu, China
  • Received:2017-07-19 Online:2018-02-20 Published:2018-01-31

摘要: 研究一类四阶变指数椭圆方程Navier边值问题。当非线性项超线性增长时,利用临界点理论中的喷泉定理,得到了多重解存在的充分条件。

关键词: Navier边值问题, 临界点, 变指数四阶椭圆方程

Abstract: A class of Navier boundary value problem for fourth-order elliptic equation with variable exponents is investigated. When the nonlinear term is growing superlinearly, some sufficient conditions for the existence of multiplicity of solutions are obtained by using the fountain theorem in critical point theory.

Key words: critical point, Navier boundary value problem, fourth-order elliptic equation with variable exponents

中图分类号: 

  • O175.8
[1] ZHIKOV V. On some variational problems[J]. Russian J Math Phys, 1997, 5:105-116.
[2] RUZICKA M. Electrorheologial fluids: modeling and mathematial theory[M]. Berlin: Springer-Verlag, 2000.
[3] 黎芳, 刘瑞华. p(x)-调和映射在图像恢复中的应用[J].中国图象图形学报,2008,13(1):19-23. LI Fang, LIU Ruihua.The application of p(x)-Harmonic mapping in image processing[J]. Journal of Image and Graphics, 2008, 13(1):19-23.
[4] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006, 66(4):1383-1406.
[5] AMROUSS A E, MORADI F, MOUSSOUI M. Existence of solutions for fourth-order PDES with variable exponents[J]. Electron J Differential Equations, 2009, 153:1-13.
[6] LIN Lin, TANG Chunlei. Existence and multiplicity of solutions for a class of p(x)-biharmonic equations[J]. Acta Mathematica Scientia, 2013, 33(1):155-170.
[7] YE Yiwei, TANG Chunlei. Infinitely many solutions for fourth-order elliptic equations[J].J Math Anal Appl, 2012, 394(2):841-854.
[8] YIN Honghui, LIU Ying. Existence of three solutions for a Navier boundary value problem involving the p(x)-biharnonic operator[J]. Bull Korean Math Soc, 2013, 50(6):1817-1826.
[9] KONG Lingju. Eigenvalues for a fourth order elliptic problem[J]. Proceedings of the American Mathematical Society, 2015, 143(1):249-258.
[10] HEIDARKHANI S, AFROUZI G A, MORADI S, et al. Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions[J]. ZAngew Math Phys, 2016, 67(3):1-13.
[11] BARTSCH T. Infinitely many solutions of a symmetric Dirichlet problem[J]. Nonlinear Analysis, 1993, 20(10):1205-1216.
[12] MIYAGAKI O H, SOUTO M S. Superlinear problems without Ambrosetti and Rabinowitz growth condition[J]. Journal Differential Equations, 2008, 245(12):3628-3638.
[13] TANG Chunlei, WU Xingping. Periodic solutions for a class of new superquadratic second order Hamiltonian systems[J]. Appl Math Lett, 2014, 34(1):65-71.
[14] YE Yiwei. Infinitely many solutions for Kirchhoff type problems[J]. Differential Equations Applications, 2013, 5(1):83-92.
[15] 张申贵. 带p(x)-调和算子的Kirchhoff型方程的多重解[J]. 山东大学学报(理学版),2016,51(10):48-53. ZHANG Shengui. Multiplicity of solutions for Kirchhoff type equation involving the p(x)-biharnonic operator[J]. Journal of Shandong University(Natural Science), 2016, 51(10):48-53.
[1] 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103.
[2] 张申贵. p(x)-调和算子的Kirchhoff型方程的多重解[J]. 山东大学学报(理学版), 2016, 51(10): 48-53.
[3] 孙国伟, 买阿丽. 一类二阶非线性差分方程同宿解的多解性[J]. 山东大学学报(理学版), 2015, 50(05): 51-54.
[4] 张申贵. 局部超线性p-基尔霍夫方程的多重解[J]. 山东大学学报(理学版), 2014, 49(05): 61-68.
[5] 张国威1,陈昂2. 初始例函数的游荡域的无穷连通性[J]. 山东大学学报(理学版), 2014, 49(04): 70-73.
[6] 张申贵. 一类超线性p(x)-调和方程的无穷多解[J]. J4, 2012, 47(10): 116-120.
[7] 张申贵. 一类非自治二阶系统的多重周期解[J]. J4, 2011, 46(11): 64-69.
[8] 朱海霞1,晏世雷2. 随机晶场作用的Blume-Capel模型的相图研究[J]. J4, 2011, 46(1): 51-55.
[9] 许万银. 一类拟线性Neumann问题的多重解[J]. J4, 2009, 44(10): 39-42.
[10] 张懿彬 . 带指数增长型Neumann边界条件的Laplace方程解的存在性[J]. J4, 2008, 43(3): 48-53 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!