您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (4): 92-96.doi: 10.6040/j.issn.1671-9352.0.2019.510

• • 上一篇    

图的Resolvent Estrada指标的上(下)界刻画

贾淑香1,邓波1,2,3,4*,冶成福1,付凤1,陈辉龙1   

  1. 1.青海师范大学数学与统计学院, 青海 西宁 810008;2. 藏文信息处理教育部重点实验室, 青海 西宁 810008;3.青海省藏文信息处理与机器翻译重点实验室, 青海 西宁810008;4.广东石油化工学院理学院, 广东 茂名 525000
  • 发布日期:2020-04-09
  • 作者简介:贾淑香(1993— ),女,硕士研究生,研究方向为组合数学与向图论. E-mail:jiashuxiang914@163.com*通信作者简介:邓波(1983— ),男,博士,副教授,研究方向为组合数学与图论. E-mail:dengbo450@163.com
  • 基金资助:
    青海省科技厅项目(2018-ZJ-925Q,2019-ZJ-921);国家自然科学基金资助项目(11701311);广东省自然科学基金项目-博士启动项目(2016A030310307)

Description of the upper(lower)bounds of Resolvent Estrada index

JIA Shu-xiang1, DENG Bo1,2,3,4*, YE Cheng-fu1, FU Feng1, CHEN Hui-long1   

  1. 1. College of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China;
    2. Tibetan Intelligent Information Processing and Machine Translation Key Laboratory, Xining 810008, Qinghai, China;
    3. Key Laboratory of Tibetan Information Processing and Machine Translation, Qinghai Province, Xining 810008, Qinghai, China;
    4. College of Science, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
  • Published:2020-04-09

摘要: G的Resolvent Estrada指标是Estrada和Higham在2010年提出的用于检测复杂网络和分子结构中心度的一类重要的图的拓扑指标, 其定义为REE(G)=∑ni=1((n-1)/(n-1-λi))=∑ni=1(1-(λ1)/(n-1))-1,其中λ12,…,λn表示图G的邻接矩阵的特征值。该指标经常用于量化分子链的度,因此在量子化学领域存在广泛的应用。本文使用柯西-施瓦兹等不等式和Resolvent Estrada能量来刻画Resolvent Estrada指标的若干上界和下界。

关键词: Resolvent Estrada指标, Resolvent Estrada能量, 邻接矩阵, 特征值

Abstract: The Resolvent Estrada index in graph G is the topological index of a class of important graphs proposed by Estrada and Higham in 2010 to detect the centrality of complex networks and molecular structures. It is defined as follow.REE(G)=∑ni=1((n-1)/(n-1-λi))=∑ni=1(1-(λ1)/(n-1))-1,where λ12,…,λn are the eigenvalues of the adjacency matrix of G. REE(G)is often used to quantify the degree of molecular chains so that it is widely used in the filed of the quantum chemistry. In this paper, Cauchy-Schwartz inequality and Resolvent Estrada energy are used to describe the upper and lower bounds of Resolvent Estrada index.

Key words: Resolvent Estrada index, Resolvent Estrada energy, adjacent matrix, eigenvalue

中图分类号: 

  • O157
[1] CVETKOVIC D, DOOB M, SACHS H. Spectra of graphs: theory and application[M]. New York: Academic Press, 1980.
[2] BENZI M, BOITO P. Quadrature rule-based bounds for functions of adjacency matrices[J]. Linear Algebra and Its Applications, 2010, 433(3):637-652.
[3] GUTMAN I, FURTULA B, ZOGIC E, et al. Resolvent energy of graphs[J]. MATCH Commun Math Comput Chem, 2016, 75:279-290.
[4] 陈小丹, 钱建国. 图的预解Estrada指标的界的估计[J]. 数学研究, 2012, 45(2):159-166. CHEN Xiaodan, QIAN Jianguo. Bounding the resolvent Estrada index of a graph[J]. Journal of Mathematical Study, 2012, 45(2):159-166.
[5] CHEN Xiaodan, QIAN Jianguo. On resolvent Estrada index[J]. J Math Comput Chem, 2015, 73:163-174.
[6] DAS K C, KUMAR P. Some new bounds on the spectral radius of graphs[J]. Discrete Mathematics, 2004, 281(1/2/3):149-161.
[7] CUI Zhihui. On Harary matrix, Harary index and Harary energy[J]. MATCH Commun Math Comput Chem, 2012, 68:815-823.
[8] ZHOU Bo. On Estrada index[J]. MATCH Commun Math Comput Chem, 2008, 60:485-492.
[9] CVETKOVIC D, ROWLINSON P, SIMIC S. An introduction to the theory of graph spectra[M]. Cambridge: Cambridge University Press, 2010.
[10] ESTRADA E, HIGHAM D J. Network properties revealed through matrix functions[J]. SIAM Review, 2010, 52(4):696-714.
[11] ESTRADA E. Characterization of 3D molecular structure[J]. Chemical Physics Letters, 2000, 319(5/6):713-718.
[12] ESTRADA E, RODRÍGUEZ-VELÁZQUEZ J A. Subgraph centrality in complex networks[J]. Physical Review E, 2005, 71(5):056103.
[1] 姬杰. 一类脉冲Strum-Liouville算子的特征值渐近式和迹公式[J]. 《山东大学学报(理学版)》, 2019, 54(10): 49-56.
[2] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[3] 蹇渊, 刘丁酉. 一类区间三对角矩阵特征值的确界[J]. 山东大学学报(理学版), 2015, 50(12): 15-22.
[4] 郝萍萍, 魏广生. 一类Dirac算子特征值的渐近式[J]. 山东大学学报(理学版), 2015, 50(02): 55-59.
[5] 靳广清,左连翠*. 图的拟拉普拉斯矩阵前k个最大特征值和的上界[J]. J4, 2013, 48(8): 1-4.
[6] 王峰. 非奇异M-矩阵的逆矩阵和M-矩阵的Hadamard积的最小特征值下界估计[J]. J4, 2013, 48(8): 30-33.
[7] 孙德荣,徐兰. 恰有三个主特征值的树[J]. J4, 2013, 48(6): 23-28.
[8] 赵娜. 时标上Sturm-Liouville问题的有限谱[J]. J4, 2013, 48(09): 96-102.
[9] YANG Xiao-ying, LIU Xin. M矩阵及其逆矩阵的Hadamard积最小特征值下界的估计[J]. J4, 2012, 47(8): 64-67.
[10] 曹海松,伍俊良 . 矩阵特征值在椭圆形区域上的估计[J]. J4, 2012, 47(10): 49-53.
[11] 廖文诗,伍俊良. 矩阵展形的一些新的上界[J]. J4, 2012, 47(10): 54-58.
[12] 高洁. 多点边值问题的特征值结构[J]. J4, 2011, 46(8): 17-22.
[13] 钱小燕. 解大型对称矩阵特征值问题的一个子空间加速截断牛顿法[J]. J4, 2011, 46(8): 8-12.
[14] 伍芸1, 姚仰新2. 在R4空间中的双调和方程的特征值问题[J]. J4, 2011, 46(6): 45-48.
[15] 许俊莲. 几个正交投影函数的特征值函数[J]. J4, 2011, 46(6): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!