您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 49-56.doi: 10.6040/j.issn.1671-9352.0.2018.760

• • 上一篇    

一类脉冲Strum-Liouville算子的特征值渐近式和迹公式

姬杰   

  1. 南京理工大学理学院, 江苏 南京 210094
  • 发布日期:2019-10-12
  • 作者简介:姬杰(1994— ),男,硕士研究生,研究方向为微分算子谱论和反问题. E-mail:1085821411@qq.com

Eigenvalues asymptotic formula and trace formula for a class of impulsive Sturm-Liouville operators

JI Jie   

  1. School of Science, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Published:2019-10-12

摘要: 针对有限区间上一类脉冲Strum-Liouville 边值问题,即区间内部有不连续点且方程右边含有间断系数,主要利用留数定理得到特征值渐近估计和迹公式。

关键词: 有限区间, 脉冲Sturm-Liouville 算子, 留数定理, 特征值渐近式, 迹公式

Abstract: A class of impulsive Strum-Liouville boundary value problems on a finite interval are discussed, there are discontinuities inside the interval and the discontinuity coefficient on the right side of the equation. The asymptotic formula of the eigenvalues and the trace formula are obtained by using the residue theorem.

Key words: finite interval, impulsive Sturm-Liouville operator, residue theorem, the eigenvalues asymptotic formula, the trace formula

中图分类号: 

  • O175.3
[1] OZKAN A S, KESKIN B, CAKMAK Y. Uniqueness of the solution of half inverse problem for the impulsive Sturm-Liouville operators[J].Bull Korean Math Soc, 2013, 50(2): 499-506.
[2] McNABB A, ANDERSSEN R, LAPWOOD E. Asymptotic behaviour of the eigenvalues of a Sturm-Liouville system with discontinuous coefficients[J]. J Math Anal Appl, 1976, 54(3): 741-751.
[3] HALD O H. Discontinuous inverse eigenvalue problem[J]. Comm Pure Appl Math, 1984, 37(5): 539-577.
[4] KRUEGER R J. Inverse problems for nonabsorbing media with discontinuous material properties[J]. J Math Phys, 1982, 23(3): 396-404.
[5] YANG C F. Traces of Sturm-Liouville operators with discontinuities[J]. Inverse Problems in Science and Engineering, 2014, 22(5): 803-813.
[6] YURKO V A. Integral transforms connected with discontinuous boundary value problems[J]. Integral Transforms Spec Funct, 2000, 10(2): 141-164.
[7] YURKO V A. Method of spectral mappings in the inverse problem theory[M]. Utrecht, Holland: Inverse iii- posed Probl Ser, 2002.
[8] FREILING G, YURKO V A. Inverse Sturm-Liouville problems and their applications[M]. New York: NOVA Science Publishers, 2001.
[1] 郝萍萍, 魏广生. 一类Dirac算子特征值的渐近式[J]. 山东大学学报(理学版), 2015, 50(02): 55-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!