《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 49-56.doi: 10.6040/j.issn.1671-9352.0.2018.760
• • 上一篇
姬杰
JI Jie
摘要: 针对有限区间上一类脉冲Strum-Liouville 边值问题,即区间内部有不连续点且方程右边含有间断系数,主要利用留数定理得到特征值渐近估计和迹公式。
中图分类号:
[1] OZKAN A S, KESKIN B, CAKMAK Y. Uniqueness of the solution of half inverse problem for the impulsive Sturm-Liouville operators[J].Bull Korean Math Soc, 2013, 50(2): 499-506. [2] McNABB A, ANDERSSEN R, LAPWOOD E. Asymptotic behaviour of the eigenvalues of a Sturm-Liouville system with discontinuous coefficients[J]. J Math Anal Appl, 1976, 54(3): 741-751. [3] HALD O H. Discontinuous inverse eigenvalue problem[J]. Comm Pure Appl Math, 1984, 37(5): 539-577. [4] KRUEGER R J. Inverse problems for nonabsorbing media with discontinuous material properties[J]. J Math Phys, 1982, 23(3): 396-404. [5] YANG C F. Traces of Sturm-Liouville operators with discontinuities[J]. Inverse Problems in Science and Engineering, 2014, 22(5): 803-813. [6] YURKO V A. Integral transforms connected with discontinuous boundary value problems[J]. Integral Transforms Spec Funct, 2000, 10(2): 141-164. [7] YURKO V A. Method of spectral mappings in the inverse problem theory[M]. Utrecht, Holland: Inverse iii- posed Probl Ser, 2002. [8] FREILING G, YURKO V A. Inverse Sturm-Liouville problems and their applications[M]. New York: NOVA Science Publishers, 2001. |
[1] | 郝萍萍, 魏广生. 一类Dirac算子特征值的渐近式[J]. 山东大学学报(理学版), 2015, 50(02): 55-59. |
|