您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (1): 35-45.doi: 10.6040/j.issn.1671-9352.4.2022.606

•   • 上一篇    下一篇

多示例嵌入学习的实例关联性挖掘与强化

杨梅1,3,4(),邓雯1,张本文2,闵帆1,3,4,*()   

  1. 1. 西南石油大学计算机科学学院, 四川 成都 610500
    2. 四川民族学院理工学院, 四川 康定 626001
    3. 西南石油大学人工智能研究院, 四川 成都 610500
    4. 西南石油大学机器学习研究中心, 四川 成都 610500
  • 收稿日期:2022-08-02 出版日期:2024-01-20 发布日期:2024-01-19
  • 通讯作者: 闵帆 E-mail:yangmei@swpu.edu.cn;minfan@swpu.edu.cn
  • 作者简介:杨梅(1982—), 女, 副教授, 硕士, 研究方向为多示例学习、深度学习. E-mail: yangmei@swpu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(62006200);四川省自然科学基金资助项目(2019YJ0314);中央引导地方科技发展专项项目(2021ZYD0003);浙江省海洋大数据挖掘与应用重点实验室开放课题(OBDMA202102)

Multi-instance embedding learning with instance affinity mining and reinforcement

Mei YANG1,3,4(),Wen DENG1,Benwen ZHANG2,Fan MIN1,3,4,*()   

  1. 1. School of Computer Science, Southwest Petroleum University, Chengdu 610500, Sichuan, China
    2. School of Polytechnic, Sichuan Minzu College, Kangding 626001, Sichuan, China
    3. Institute for Artificial Intelligence, Southwest Petroleum University, Chengdu 610500, Sichuan, China
    4. Lab of Machin Learning, Southwest Petroleum University, Chengdu 610500, Sichuan, China
  • Received:2022-08-02 Online:2024-01-20 Published:2024-01-19
  • Contact: Fan MIN E-mail:yangmei@swpu.edu.cn;minfan@swpu.edu.cn

摘要:

提出了多示例嵌入学习(multi-instance learning, MIL)的实例关联性挖掘与强化算法(multi-instance embedding learning with instance affinity mining and reinforcement, MEMR), 包括3个技术。关联性挖掘技术基于自定义的关联性指标, 首先在负实例空间中选择初始负代表实例集, 然后根据正、负实例间的差异性, 选择初始正代表实例集。关联性强化技术分别评估初始正、负代表实例集与整个实例空间的正负关联性, 获得整体关联性更强的代表实例集。包嵌入技术通过嵌入函数将包转换为单向量进行学习。实验在4类应用领域和7种对比算法上进行。结果表明, MEMR的准确性总体优于其他对比算法, 特别是在图像检索和网页推荐数据集上具有显著优势。

关键词: 关联性挖掘, 关联性强化, 嵌入方法, 实例选择, 多示例学习

Abstract:

We propose the multi-instance embedding learning with instance affinity mining and reinforcement(MEMR) algorithm, including three techniques. The affinity mining technique is based on a custom affinity metric. First, the initial negative representative instance set(INRI) is selected in the negative instance space. Then, the initial positive representative instance set(IPRI) is chosen according to the difference between positive and negative instances. The affinity reinforcement technique evaluates the positive(negative) affinity between IPRI(INRI) and the entire instance space to obtain a representative instance set with stronger overall affinity. The bag embedding technique converts bags into single vectors for learning through the designed embedding function. Experiments are carried out across four application domains and seven comparison algorithms. The results show that MEMR generally outperforms other comparison algorithms in accuracy, especially in image retrieval and web recommendation datasets.

Key words: affinity mining, affinity reinforcement, embedding method, instance selection, multi-instance learning

中图分类号: 

  • O213

图1

MEMR算法的主体流程"

表1

符号说明"

符号 含义 符号 含义
$\mathscr{X}$ 实例空间 Vi Bi的嵌入向量
$\mathscr{T}$ 数据集 N $\mathscr{T}$中包的个数
Y 标签向量 ni Bi中实例的个数
Bi i个包 d 实例的维度
xij Bi的第j个实例 m 正包的个数
yi Bi的标签 ψ C中代表实例的个数
C 代表实例集

图2

包嵌入技术示意图"

表2

数据集的详细属性"

数据集 包数量 实例数 维度
正包 负包
Elephant 100 100 200 1 391 230
Fox 100 100 200 1 320 230
Tiger 100 100 200 1 220 230
Messidor 654 546 1 200 12 352 687
Ucsb_breast 26 32 58 2 002 708
Newsgroups 993 1 007 2 000 80 137 200
Web 490 527 1 017 30 807 6 211

图3

MEMR代表实例数量的参数分析"

图4

MEMR与MEM的消融实验(%)"

表3

图像检索和医学图像数据集的平均准确率"

Dataset Simple-MI MILFM miFV miVLAD MILDM Stable-MIL ELDB MEMR
Elephant 82.5±0.84 81.5±1.22 86.0±1.76 84.7±0.98 76.5±1.64 63.2±2.58 75.4±1.99 87.1±1.28
Fox 61.9±0.86 60.8±2.60 61.2±0.75 63.3±1.75 54.2±3.47 59.7±4.33 58.8±2.66 64.6±0.86
Tiger 81.1±1.16 76.3±1.29 79.1±0.58 84.9±7.63 69.0±1.41 65.7±2.06 67.4±2.73 85.1±0.37
Messidor 61.8±0.84 62.1±0.53 70.5±0.53 67.5±0.28 64.0±0.24 62.2±0.47 56.8±1.53 69.3±0.30
Ucsb_breast 81.2±2.71 55.6±2.33 85.6±0.80 80.0±1.79 56.0±2.19 54.4±0.20 63.0±7.62 82.8±4.12

表4

文本分类数据集的平均准确率"

Dataset Simple-MI MILFM miFV miVLAD MILDM Stable-MI ELDB MEMR
News.aa 83.6±0.80 52.6±7.86 83.8±1.60 84.0±2.28 54.6±7.06 52.6±4.03 84.6±1.78 86.0±2.28
News.cg 78.0±0.63 54.6±1.20 80.2±0.98 79.6±0.80 53.2±5.31 50.2±5.11 79.5±2.42 80.8±1.33
News.co 57.4±3.56 49.6±2.24 72.2±1.33 69.2±1.60 52.2±4.31 47.4±4.03 63.1±3.07 71.6±2.06
News.csi 75.4±0.80 57.6±3.20 79.8±1.17 80.0±1.55 56.6±6.62 50.2±5.49 78.1±2.02 81.2±2.40
News.csm 77.8±0.75 52.8±6.79 77.2±0.75 78.0±1.10 43.4±3.38 51.0±5.02 76.4±3.89 80.6±0.80
News.cw 71.0±3.16 57.8±2.79 86.6±0.80 82.6±1.02 56.8±4.31 54.2±4.49 79.6±1.43 81.0±1.10
News.mf 58.8±0.98 51.2±2.32 71.0±1.26 72.2±1.94 46.8±2.71 52.6±6.65 64.4±2.37 74.0±2.68
News.ra 75.4±0.49 52.4±1.62 78.4±1.36 81.6±1.02 51.8±6.68 52.0±5.02 71.5±2.27 82.4±1.74
News.rm 77.2±2.56 54.8±3.25 85.6±2.58 82.8±0.75 57.0±5.10 54.0±1.90 81.7±1.83 83.2±1.17
News.rsb 74.6±1.02 54.6±3.44 84.8±0.40 83.2±0.75 48.2±3.43 54.2±3.06 79.2±3.33 83.6±1.36
News.rsh 80.8±0.98 50.4±0.49 87.8±1.33 89.6±1.02 47.4±5.85 51.0±4.77 77.2±3.19 90.0±1.55
News.sc 73.8±0.40 58.6±1.85 75.2±1.60 83.0±1.10 49.4±3.83 50.2±4.53 70.0±2.87 82.8±1.60
News.se 92.0±0.00 53.0±0.00 92.6±0.80 92.4±0.49 55.6±1.96 51.0±3.58 88.2±1.32 92.4±1.36
News.sm 72.4±1.36 57.2±0.75 83.2±1.72 81.0±1.10 52.6±4.96 51.0±7.16 80.9±2.81 83.6±1.36
News.sr 77.4±0.80 50.2±1.17 79.8±2.56 79.8±2.32 51.4±2.80 57.6±2.65 80.7±1.16 80.6±1.62
News.ss 82.2±0.40 54.2±1.72 87.2±1.17 85.6±1.20 50.2±2.79 50.0±1.41 78.8±1.75 88.6±1.20
News.tpg 77.2±1.17 52.6±1.36 77.8±1.17 81.8±0.75 44.0±4.77 51.0±2.61 75.4±2.91 81.0±1.67
News.tpmd 83.0±1.79 60.0±3.58 79.0±0.63 83.6±1.02 55.6±2.94 55.6±4.59 76.7±2.26 85.2±1.17
News.tpmc 66.2±3.82 62.4±1.02 75.8±1.47 76.0±1.67 53.6±4.03 56.8±2.99 65.5±1.78 77.2±0.75
News.trm 61.6±1.02 52.6±1.02 75.0±1.10 78.0±2.28 47.2±3.87 51.0±3.63 66.4±2.27 76.2±1.47

表5

网页推荐数据集的平均准确率"

Dataset Simple-MI MILFM miFV miVLAD MILDM Stable-MI ELDB MEMR
Web1 80.7±2.53 81.6±0.86 83.4±1.06 79.6±1.09 83.6±1.15 83.0±1.23 81.1±1.72 84.0±1.36
Web2 82.3±2.34 81.0±0.36 83.0±0.93 80.0±1.00 82.7±0.81 82.7±1.00 74.2±2.31 81.4±1.56
Web3 80.7±2.90 81.9±1.68 82.1±0.93 81.2±1.87 81.6±0.73 81.4±1.23 79.0±1.99 82.0±1.45
Web4 80.9±1.00 79.8±2.26 80.3±1.09 83.8±0.36 78.7±1.36 77.6±0.45 79.1±2.59 85.6±1.56
Web5 78.1±1.52 77.8±2.41 78.1±1.15 82.5±0.89 79.0±1.41 78.1±0.61 74.1±2.82 83.2±1.09
Web6 79.8±2.90 82.0±1.34 77.8±0.45 84.9±0.93 82.7±1.52 76.5±0.68 79.7±1.77 86.7±1.87
Web7 64.1±0.73 60.0±1.99 68.0±2.02 72.9±2.18 61.8±4.53 61.0±3.06 52.6±3.49 74.5±1.41
Web8 64.7±1.45 61.6±2.66 71.2±1.59 76.3±2.70 56.1±2.02 59.0±3.19 48.0±3.16 78.9±2.10
Web9 68.0±2.53 57.4±3.01 74.0±4.05 77.2±1.15 56.7±2.34 54.9±3.73 46.5±2.93 81.2±2.97

表6

8个算法在4类数据集上的平均排名"

Datasets Simple-MI MILFM miFV miVLAD MILDM Stable-MIL ELDB MEMR
图像检索 3.33 5.00 3.33 2.33 6.67 7.33 7.00 1.00
医学图像 5.00 6.50 1.00 3.50 5.00 6.50 6.50 2.00
文本分类 4.45 6.45 2.55 2.25 7.25 7.30 4.20 1.55
网页推荐 4.89 5.11 3.33 3.67 4.33 5.78 7.33 1.56
平均排名 4.50 5.97 2.74 2.71 6.29 6.85 5.41 1.53

图5

MEMR与7种算法的Bonferroni-Dunn检验"

表7

8个算法在5个数据集上一次10CV的CPU运行时间"

Datasets(d/n/N) Simple-MI MILFM miFV miVLAD MILDM Stable-MIL ELDB MEMR
Time Complexity O(dN) O(dn2) O(dn) O(dn) O(dn2) O(dn2) O(dn2) O(dn)
Elephant (230/1 320/200) 0.141 39.974 5.561 1.062 34.179 16.962 24.854 5.234
Ucsb_breast (708/2 002/58) 0.125 83.145 8.576 1.390 65.969 152.230 63.860 4.624
News.aa (200/5 443/100) 0.078 446.780 5.717 1.250 382.254 66.806 349.120 3.905
News.sm (200/3 094/100) 0.063 130.253 5.030 1.094 121.533 40.662 114.382 3.406
Web4 (6 059/3 423/113) 1.109 533.881 711.693 9.748 453.940 1 169.954 785.484 44.241
Mean rank 1.00 7.40 4.00 2.00 6.40 6.20 6.00 3.00
1 DIETTERICH T G , LATHROP R H , LOZANO-PEREZ T . Solving the multiple instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89 (1/2): 31- 71.
2 LI Daxiang , ZHANG Yue . Multi-instance learning algorithm based on LSTM for Chinese painting image classification[J]. IEEE Access, 2020, 8, 179336- 179345.
doi: 10.1109/ACCESS.2020.3027982
3 SHARMA Y, SHRIVASTAVA A, EHSAN L, et al. Cluster-to-conquer: a framework for end-to-end multi-instance learning for whole slide image classification[C]//Medical Imaging with Deep Learning. Lübeck: PMLR, 2021: 682-698.
4 王刚, 许信顺. 一种新的基于多示例学习的场景分类方法[J]. 山东大学学报(理学版), 2010, 45 (7): 108- 113.
WANG Gang , XU Xinshun . A new multi-instance learning method for scene classification[J]. Journal of Shandong University (Natural Science), 2010, 45 (7): 108- 113.
5 YI Lin , ZHANG Honggang . Regularized instance embedding for deep multi-instance learning[J]. Applied Sciences, 2020, 10 (1): 64- 78.
6 KUMAR V, CHEMMENGATH S, GUPTA Y, et al. Multi-instance training for question answering across table and linked text[J/OL]. arXiv, 2021. https://arxiv.org/abs/2112.07337.
7 YANG Mei, ZENG Wenxi, MIN Fan. Multi-instance embedding learning through high-level instance selection[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Chengdu: Springer, 2022: 122-133.
8 TIAN Yuchi , WANG Jiawei , YANG Wenjie , et al. Deep multi-instance transfer learning for pneumothorax classification in Chest X-Ray images[J]. Medical Physics, 2022, 49 (1): 231- 243.
doi: 10.1002/mp.15328
9 MANIVANNAN S , COBB C , BURGESS S , et al. Subcategory classifiers for multiple-instance learning and its application to retinal nerve fiber layer visibility classification[J]. IEEE Transactions on Medical Imaging, 2017, 36 (5): 1140- 1150.
doi: 10.1109/TMI.2017.2653623
10 WEI Xiushen , YE Hanjia , MU Xin , et al. Multi-instance learning with emerging novel class[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33 (5): 2109- 2120.
11 ZHANG Yalin, ZHOU Zhihua. Multi-instance learning with key instance shift[C]//International Joint Conference on Artificial Intelligence. Melbourne: IJCAI, 2017: 3441-3447.
12 XU Xin, FRANK E. Logistic regression and boosting for labeled bags of instances[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer, 2004: 272-281.
13 MELKI G , CANO A , VENTURA S . MIRSVM: multi-instance support vector machine with bag representatives[J]. Pattern Recognition, 2018, 79, 228- 241.
doi: 10.1016/j.patcog.2018.02.007
14 LUAN Tianxiang , LUO Tingjin , ZHUGE Wenzhang , et al. Optimal representative distribution margin machine for multi-instance learning[J]. IEEE Access, 2020, 8, 74864- 74874.
doi: 10.1109/ACCESS.2020.2988764
15 CHIKONTWE P, KIM M, NAM S J, et al. Multiple instance learning with center embeddings for histopathology classification[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Lima: Springer, 2020: 519-528.
16 YANG Mei , ZHANG Yuxuan , WANG Xizhao , et al. Multi-instance ensemble learning with discriminative bags[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52 (9): 5456- 5467.
17 AMORES J . Multiple instance classification: review, taxonomy and comparative study[J]. Artificial Intelligence, 2013, 201, 81- 105.
doi: 10.1016/j.artint.2013.06.003
18 WEI Xiushen, WU Jianxin, ZHOU Zhihua. Scalable multi-instance learning[C]//International Conference on Data Mining. Shenzhen: IEEE, 2014: 1037-1042.
19 ZHANG Minling , ZHOU Zhihua . Multi-instance clustering with applications to multi-instance prediction[J]. Applied Intelligence, 2009, 31 (1): 47- 68.
doi: 10.1007/s10489-007-0111-x
20 CHEN Yixin , BI Jinbo , WANG J Z . MILES: multiple-instance learning via embedded instance selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (12): 1931- 1947.
doi: 10.1109/TPAMI.2006.248
21 LI Wujun . MILD: multiple-instance learning via disambiguation[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22 (1): 76- 89.
22 HONG Richang , WANG Meng , GAO Yue , et al. Image annotation by multiple-instance learning with discriminative feature mapping and selection[J]. IEEE Transactions on Cybernetics, 2013, 44 (5): 669- 680.
23 WEI Xiushen , WU Jianxin , ZHOU Zhihua . Scalable algorithms for multi-instance learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (4): 975- 987.
doi: 10.1109/TNNLS.2016.2519102
24 WU Jia , PAN Shirui , ZHU Xingquan , et al. Multi-instance learning with discriminative bag mapping[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30 (6): 1065- 1080.
doi: 10.1109/TKDE.2017.2788430
25 ZHANG Weijia, LI Jiuyong, LIU Lin. Robust multi-instance learning with stable instances[J/OL]. arXiv, 2019. https://arxiv.org/pdf/1902.05066.pdf.
26 FU Zhouyu , ROBLES-KELLY A , ZHOU Jun . MILIS: multiple instance learning with instance selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33 (5): 958- 977.
27 MIN Fan , ZHANG Shiming , CIUCCI D , et al. Three-way active learning through clustering selection[J]. International Journal of Machine Learning and Cybernetics, 2020, 11 (5): 1033- 1046.
doi: 10.1007/s13042-020-01099-2
28 ANDREWS S , TSOCHANTARIDIS I , HOFMANN T . Support vector machines for multiple-instance learning[J]. Neural Information Processing Systems, 2002, 14, 561- 568.
29 DECENCIERE E , ZHANG Xiwei , CAZUGUEL G , et al. Feedback on a publicly distributed image database: the Messidor database[J]. Image Analysis and Stereology, 2014, 33 (3): 231- 234.
doi: 10.5566/ias.1155
30 KANDEMIR M , HAMPRECHT F A . Computer-aided diagnosis from weak supervision: a benchmarking study[J]. Computerized Medical Imaging and Graphics, 2015, 42, 44- 50.
doi: 10.1016/j.compmedimag.2014.11.010
31 ZHOU Zhihua, SUN Yuyin, LI Yufeng. Multi-instance learning by treating instances as non-iid samples[C]//Proceedings of the 26th Annual International Conference on Machine Learning. Montreal: ACM, 2009: 1249-1256.
32 XU Bicun, TING Kaiming, ZHOU Zhihua. Isolation set-kernel and its application to multi-instance learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anchorage: ACM, 2019: 941-949.
33 DEMSAR J . Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006, 7, 1- 30.
[1] 杨梅,柯文静,王丹东. 多示例学习的可行域定位及快速因果实例选择[J]. 《山东大学学报(理学版)》, 2023, 58(9): 105-113, 126.
[2] 王刚,许信顺*. 一种新的基于多示例学习的场景分类方法[J]. J4, 2010, 45(7): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邹国平1,马儒宁1,丁军娣2,钟宝江3. 基于显著性加权颜色和纹理的图像检索[J]. J4, 2010, 45(7): 81 -85 .
[2] 陈 莉 . 不确定奇异系统的鲁棒故障诊断滤波器设计[J]. J4, 2007, 42(7): 62 -65 .
[3] 郭兰兰1,2,耿介1,石硕1,3,苑飞1,雷丽1,杜广生1*. 基于UDF方法的阀门变速关闭过程中的#br# 水击压强计算研究[J]. 山东大学学报(理学版), 2014, 49(03): 27 -30 .
[4] 史开泉. 信息规律智能融合与软信息图像智能生成[J]. 山东大学学报(理学版), 2014, 49(04): 1 -17 .
[5] 章 玲,周德群 . λ模糊测度及其Mbius变换和关联系数间关系的推导[J]. J4, 2007, 42(7): 33 -37 .
[6] 丁超1,2, 元昌安1,3*, 覃晓1,3. 基于GEP的多数据流预测算法[J]. J4, 2010, 45(7): 50 -54 .
[7] 张德瑜,翟文广 . 关于整数n的k次补数[J]. J4, 2006, 41(5): 4 -07 .
[8] 杨建, 张建平,程新路, 杨向东. 类铍离子 1s22s2p 3P0,能级之间的磁偶极跃迁[J]. J4, 2009, 44(11): 29 -34 .
[9] 房用,慕宗昭,王月海,鲍玉海,孙蕾 . 个杨树无性系蒸腾特性及其影响因子研究[J]. J4, 2006, 41(6): 168 -172 .
[10] 孟祥波1,张立东1,杜子平2. 均值-方差标准下带跳的保险公司投资与再保险策略[J]. 山东大学学报(理学版), 2014, 49(05): 36 -40 .