您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (4): 90-97.doi: 10.6040/j.issn.1671-9352.0.2023.150

•   • 上一篇    下一篇

具有胞间传播和蛋白酶抑制剂的时滞HIV模型的动力学分析

苗卉1(),夏米西努尔·阿布都热合曼2,*()   

  1. 1. 山西财经大学应用数学学院, 山西 太原 030006
    2. 新疆大学数学与系统科学学院, 新疆 乌鲁木齐 830046
  • 收稿日期:2023-04-10 出版日期:2024-04-20 发布日期:2024-04-12
  • 通讯作者: 夏米西努尔·阿布都热合曼 E-mail:miaohuixju@163.com;xamxinur@sina.com
  • 作者简介:苗卉(1987—), 女, 副教授, 博士, 研究方向为生物数学. E-mail: miaohuixju@163.com
  • 基金资助:
    国家自然科学基金资助项目(11901363);国家自然科学基金资助项目(11771373);国家自然科学基金资助项目(12271317);山西省高等学校科技创新项目(2021L279);山西省基础研究计划项目(202103021224291);山西省基础研究计划项目(202203021211334)

Dynamic behaviors analysis of delayed HIV model with cell-to-cell transmissions and protease inhibitors

Hui MIAO1(),Xamxinur ABDURAHMAN2,*()   

  1. 1. School of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
    2. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
  • Received:2023-04-10 Online:2024-04-20 Published:2024-04-12
  • Contact: Xamxinur ABDURAHMAN E-mail:miaohuixju@163.com;xamxinur@sina.com

摘要:

考虑HIV的传播机制和抗病毒药物治疗,建立具有胞间传播f2(G, J)和蛋白酶抑制剂的时滞HIV模型。证明平衡点E0E1的全局渐近稳定性。理论分析表明,忽视胞间传播f2(G, J)或胞外传播f1(G, L)会导致对病毒感染基本再生数R0的低估,并通过数值模拟验证理论结果。

关键词: HIV感染模型, 胞间传播, 蛋白酶抑制剂, Lyapunov泛函, 全局稳定性

Abstract:

In this paper, considering the transmission mechanism of HIV and antiviral drug therapy, a delayed HIV model with cell-to-cell transmission f2(G, J) and a protease inhibitor therapy is investigated. The global stability of equilibria E0 and E1 is proven. Our analysis shows that neglecting cell-to-cell transmission f2(G, J) or virus-to-cell infection f1(G, L) can lead to an underestimation of the basic number of virus infections R0, and the theoretical results were validated through numerical simulation.

Key words: HIV infection model, cell-to-cell transmission, protease inhibitor, Lyapunov functional, global stability

中图分类号: 

  • O175

表1

模型(1)参数说明"

参数生物学含义
n(G(t))未感染细胞的输入率
μ1感染细胞的死亡率
τ1未感染细胞被病毒或感染细胞接触后变成感染细胞所需的时间
e-a1τ1从时刻t-τ1到时刻t感染细胞的存活率
μ2传染性病毒的清除率
τ2病毒从进入细胞到感染细胞释放出新病毒所需的时间
e-a2τ2从时刻t-τ2到时刻t病毒的存活率
$\epsilon$蛋白酶抑制剂的药物效应
c每个感染细胞产生的病毒的数量

图1

令β1=0.25, β2=0.001, $\epsilon$=0.98, 有R0=0.307 3 < 1,E0全局渐近稳定"

图2

令β1=0.35, β2=0.25, $\epsilon$=0.6,有R0=50.839 2>1,E1全局渐近稳定"

1 马知恩,周义仓,王稳地.传染病动力学的建模与研究[M].北京:科学出版社,2004.
MAZhien,ZHOUYicang,WANGWendi.Modeling and research on the dynamics of infectious diseases[M].Beijing:Science Press,2004.
2 YANGJunxian,WANGLeihong.Dynamics analysis of a delayed HIV infection model with CTL immune response and antibody immune response[J].Acta Mathematica Scientia,2021,41(3):991-1016.
doi: 10.1007/s10473-021-0322-y
3 MIAOHui,ABDURAHMANXamxinur,TENGZhidong,et al.Dynamical analysis of a delayed reaction-diffusion virus infection model with logistic growth and humoral immune impairment[J].Chaos Solitons Fractals,2018,110,280-291.
doi: 10.1016/j.chaos.2018.03.006
4 MONICAC,PITCHAIMANIM.Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and three intracellular delays[J].Nonlinear Analysis: Real World Applications,2016,27(1):55-69.
5 CHENZhimin,LIUXiuxiang,ZENGLiling.Threshold dynamics and threshold analysis of HIV infection model with treatment[J].Advances in Difference Equations,2020,(1):1-25.
6 FELDMANNJ,SCHWARTZO.HIV-1 virological synapse: live imaging of transmission[J].Viruses,2010,2(8):1666-1680.
doi: 10.3390/v2081666
7 SATTENTAUQ.Avoiding the void: cell-to-cell spread of human viruses[J].Nature Reviews Microbiology,2008,6(11):815-826.
8 SHUHongying,CHENYuming,WANGLin.Impacts of the cell-free and cell-to-cell infection modes on viral dynamics[J].Journal of Dynamics and Differential Equations,2018,30(4):1817-1836.
9 BAINing,XURui.Backward bifurcation and stability analysis in a within-host HIV model with both virus-to-cell infection and cell-to-cell transmission, and anti-retroviral therapy[J].Mathematics and Computers in Simulation,2022,200,162-185.
doi: 10.1016/j.matcom.2022.04.020
10 WANGYan,LIUJun,ZHANGXinhong,et al.An HIV stochastic model with cell-to-cell infection, B-cell immune response and distributed delay[J].Journal of Mathematical Biology,2023,86(3):1-40.
11 SUNHongquan,WANGJinliang.Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay[J].Computers and Mathematics with Applications,2019,77(1):284-301.
12 KUANGYang.Delay differential equations with applications in population dynamics[M].San Diego:Academic Press,1993.
[1] 陈刚,张睿. 一类具有预防接种的两菌株共感模型的传染病动力学分析[J]. 《山东大学学报(理学版)》, 2023, 58(10): 84-96.
[2] 王长弘,王林山. 基于忆阻器的S-分布时滞随机神经网络的均方指数稳定性[J]. 山东大学学报(理学版), 2016, 51(5): 130-135.
[3] 甄艳, 王林山. S-分布时滞随机广义细胞神经网络的均方指数稳定性分析[J]. 山东大学学报(理学版), 2014, 49(12): 60-65.
[4] 杨俊仙,徐丽*. 一类具非线性发生率和时滞的SIQS传染病模型的全局稳定性[J]. 山东大学学报(理学版), 2014, 49(05): 67-74.
[5] 常青, 周立群*. 一类具时滞细胞神经网络的全局一致渐近稳定性[J]. J4, 2012, 47(8): 42-49.
[6] 董春燕,伏升茂. 一类害虫流行病控制模型非常数正平衡解的存在性[J]. J4, 2011, 46(3): 80-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 江雪莲,石洪波*. 产生式与判别式组合分类器学习算法[J]. J4, 2010, 45(7): 7 -12 .
[2] 彭艳芬,李宝宗,刘天宝 . 有机气体麻醉活性的构效关系研究[J]. J4, 2006, 41(5): 148 -150 .
[3] 刁科凤,赵 平 . 具有最小连通点对图的C-超图的染色讨论[J]. J4, 2007, 42(2): 56 -58 .
[4] 薛岩波 杨波 陈贞翔. 小波分析在土木工程结构健康监测系统中的应用研究[J]. J4, 2009, 44(9): 28 -31 .
[5] 王 兵 . 拟无爪图的性质[J]. J4, 2007, 42(10): 111 -113 .
[6] 朱焱,侯建锋,王纪辉 . 图的粘合运算与韧度和孤立韧度的关系[J]. J4, 2006, 41(5): 59 -62 .
[7] 周娟,郭卫华,宗美娟,韩雪梅,王仁卿 . 房干村不同植被下可培养细菌多样性研[J]. J4, 2006, 41(6): 161 -167 .
[8] 朱智强,马可欣,孙磊. 一种基于零知识证明的远程桌面认证协议[J]. 山东大学学报(理学版), 2016, 51(9): 47 -52 .
[9] 孙守斌,孟广武,赵 峰 . 序同态的Dα-连续性[J]. J4, 2007, 42(7): 49 -53 .
[10] 郭亭,鲍晓明 . P137G点突变对嗜热细菌木糖异构酶酶活性及热稳定性的影响[J]. J4, 2006, 41(6): 145 -148 .