《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (4): 90-97.doi: 10.6040/j.issn.1671-9352.0.2023.150
Hui MIAO1(),Xamxinur ABDURAHMAN2,*()
摘要:
考虑HIV的传播机制和抗病毒药物治疗,建立具有胞间传播f2(G, J)和蛋白酶抑制剂的时滞HIV模型。证明平衡点E0和E1的全局渐近稳定性。理论分析表明,忽视胞间传播f2(G, J)或胞外传播f1(G, L)会导致对病毒感染基本再生数R0的低估,并通过数值模拟验证理论结果。
中图分类号:
1 | 马知恩,周义仓,王稳地.传染病动力学的建模与研究[M].北京:科学出版社,2004. |
MAZhien,ZHOUYicang,WANGWendi.Modeling and research on the dynamics of infectious diseases[M].Beijing:Science Press,2004. | |
2 |
YANGJunxian,WANGLeihong.Dynamics analysis of a delayed HIV infection model with CTL immune response and antibody immune response[J].Acta Mathematica Scientia,2021,41(3):991-1016.
doi: 10.1007/s10473-021-0322-y |
3 |
MIAOHui,ABDURAHMANXamxinur,TENGZhidong,et al.Dynamical analysis of a delayed reaction-diffusion virus infection model with logistic growth and humoral immune impairment[J].Chaos Solitons Fractals,2018,110,280-291.
doi: 10.1016/j.chaos.2018.03.006 |
4 | MONICAC,PITCHAIMANIM.Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and three intracellular delays[J].Nonlinear Analysis: Real World Applications,2016,27(1):55-69. |
5 | CHENZhimin,LIUXiuxiang,ZENGLiling.Threshold dynamics and threshold analysis of HIV infection model with treatment[J].Advances in Difference Equations,2020,(1):1-25. |
6 |
FELDMANNJ,SCHWARTZO.HIV-1 virological synapse: live imaging of transmission[J].Viruses,2010,2(8):1666-1680.
doi: 10.3390/v2081666 |
7 | SATTENTAUQ.Avoiding the void: cell-to-cell spread of human viruses[J].Nature Reviews Microbiology,2008,6(11):815-826. |
8 | SHUHongying,CHENYuming,WANGLin.Impacts of the cell-free and cell-to-cell infection modes on viral dynamics[J].Journal of Dynamics and Differential Equations,2018,30(4):1817-1836. |
9 |
BAINing,XURui.Backward bifurcation and stability analysis in a within-host HIV model with both virus-to-cell infection and cell-to-cell transmission, and anti-retroviral therapy[J].Mathematics and Computers in Simulation,2022,200,162-185.
doi: 10.1016/j.matcom.2022.04.020 |
10 | WANGYan,LIUJun,ZHANGXinhong,et al.An HIV stochastic model with cell-to-cell infection, B-cell immune response and distributed delay[J].Journal of Mathematical Biology,2023,86(3):1-40. |
11 | SUNHongquan,WANGJinliang.Dynamics of a diffusive virus model with general incidence function, cell-to-cell transmission and time delay[J].Computers and Mathematics with Applications,2019,77(1):284-301. |
12 | KUANGYang.Delay differential equations with applications in population dynamics[M].San Diego:Academic Press,1993. |
[1] | 陈刚,张睿. 一类具有预防接种的两菌株共感模型的传染病动力学分析[J]. 《山东大学学报(理学版)》, 2023, 58(10): 84-96. |
[2] | 王长弘,王林山. 基于忆阻器的S-分布时滞随机神经网络的均方指数稳定性[J]. 山东大学学报(理学版), 2016, 51(5): 130-135. |
[3] | 甄艳, 王林山. S-分布时滞随机广义细胞神经网络的均方指数稳定性分析[J]. 山东大学学报(理学版), 2014, 49(12): 60-65. |
[4] | 杨俊仙,徐丽*. 一类具非线性发生率和时滞的SIQS传染病模型的全局稳定性[J]. 山东大学学报(理学版), 2014, 49(05): 67-74. |
[5] | 常青, 周立群*. 一类具时滞细胞神经网络的全局一致渐近稳定性[J]. J4, 2012, 47(8): 42-49. |
[6] | 董春燕,伏升茂. 一类害虫流行病控制模型非常数正平衡解的存在性[J]. J4, 2011, 46(3): 80-88. |
|