《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (10): 84-96.doi: 10.6040/j.issn.1671-9352.0.2022.543
摘要:
为了探讨多菌株在同一宿主群体有共同感染的传播动态,建立并分析了持续接种一种菌株疫苗后两菌株共同传播的动力学数学模型。首先通过对模型的计算和分析,得到4类平衡点存在的充分条件,除了无病平衡点和2个单株地方病平衡点以外,模型还存在菌株1、2都共存的地方病平衡点;其次,利用Lyapunov稳定性定理证明当2个菌株的基本再生数都小于1时,无病平衡点是全局稳定的。在确定单菌株地方病平衡点的稳定性时,引入了入侵再生数,当对应入侵再生数小于1时该菌株的地方病平衡点是局部稳定的;然后利用Castillo-Chavez和Song分支定理,证明了该模型不存在后向分支现象,进而证明了2个菌株的基本再生数都大于1时,共存平衡点是局部渐近稳定的;最后,通过数值模拟验证了以上的结论。
中图分类号:
1 | BRAUER F , CASTILLO- CHÁVEZ C . Mathematical models in population biology and epidemiology[M]. 2nd ed. New York: Springer, 2012: 18- 25. |
2 | UNAIDS . Report on the global AIDS epidemic[M]. Geneva: World Health Organization, 2008: 11- 62. |
3 | 皮特·布鲁克史密斯. 未来的灾难: 瘟疫复活与人类的生存之战[M]. 马永波, 译. 海口: 海南出版社, 1999: 17-184. |
BROOKESMITH Peter. Future disaster: the resurrection of plague and the battle for human survival[M]. MA Yongbo, Translation. Haikou: Hainan Press, 1999: 17-184. | |
4 | World Health Organization . World malaria situation in 1993[J]. Releve Epidemiologique Hebdomadaire, 1996, 71 (3): 17- 22. |
5 | UNAIDS , World Health Organization . Epidemiological Fact Sheet on HIV/AIDS and sexually transmitted infections[J]. Age, 2000, 30 (34): 45- 49. |
6 | MARTCHEVA M . An introduction to mathematical epidemiology[M]. Boston: Springer, 2015: 173- 174. |
7 | GETAHUN H , GUNNEBERG C , GRANICH R , et al. HIV infection-associated tuberculosis: the epidemiology and the response[J]. Clinical Infectious Diseases, 2010, 50 (Suppl.3): 201- 207. |
8 |
KANG M , HOLLABAUGH K , PHAM V , et al. Virologic and serologic outcomes of mono versus dual HBV therapy and characterization of HIV/HBV coinfection in a US cohort[J]. Journal of Acquired Immune Deficiency Syndromes, 2014, 66 (2): 172- 180.
doi: 10.1097/QAI.0000000000000149 |
9 |
SHARP G B , KAWAOKA Y , JONES D J , et al. Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance[J]. Journal of Virology, 1997, 71 (8): 6128- 6135.
doi: 10.1128/jvi.71.8.6128-6135.1997 |
10 |
CHATURVEDI A K , KATKI H A , HILDESHEIM A , et al. Human papillomavirus infection with multiple types: pattern of coinfection and risk of cervical disease[J]. The Journal of Infectious Diseases, 2011, 203 (7): 910- 920.
doi: 10.1093/infdis/jiq139 |
11 |
ALLEN L J S , LANGLAIS M , PHILLIPS C J . The dynamics of two viral infections in a single host population with applications to hantavirus[J]. Mathematical Biosciences, 2003, 186 (2): 191- 217.
doi: 10.1016/j.mbs.2003.08.002 |
12 | FERGUSON N , ANDERSON R , GUPTA S . The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96 (2): 790- 794. |
13 |
KAWAGUCHI I , SASAKI A , BOOTS M . Why are dengue virus serotypes so distantly related? Enhancement and limiting serotype similarity between dengue virus strains[J]. Proceedings Biological Sciences, 2003, 270 (1530): 2241- 2247.
doi: 10.1098/rspb.2003.2440 |
14 |
ZHANG P , SANDLAND G J , FENG Z , et al. Evolutionary implications for interactions between multiple strains of host and parasite[J]. Journal of Theoretical Biology, 2007, 248 (2): 225- 240.
doi: 10.1016/j.jtbi.2007.05.011 |
15 |
HAUG S , LAKEW T , HABTEMARIAM G , et al. The decline of pneumococcal resistance after cessation of mass antibiotic distributions for trachoma[J]. Clinical Infectious Diseases, 2010, 51 (5): 571- 574.
doi: 10.1086/655697 |
16 | LAKSHMIKANTHAM V , LEELA S , MARTYN I UK A A . Stability analysis of nonlinear systems[M]. New York: New York Dekker, 1989: 42- 43. |
17 | SMITH H L , WALTMAN P E . The theory of the chemostat: dynamics of microbial competition[M]. Cambridge: Cambridge University Press, 1995: 120. |
18 | VAN DEN DRIESSCHE P , WATMOUGH J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180 (1/2): 29- 48. |
19 |
DIEKMANN O , HEESTERBEEK J A P , ROBERTS M G . The construction of next-generation matrices for compartmental epidemic models[J]. Journal of the Royal Society Interface, 2010, 7 (47): 873- 885.
doi: 10.1098/rsif.2009.0386 |
20 | 林支桂. 数学生态学导引[M]. 北京: 科学出版社, 2013: 19. |
LIN Zhigui . Guidance of mathematical ecology[M]. Beijing: Science Press, 2013: 19. | |
21 | CASTILLO-CHAVEZ C , SONG B J . Dynamical models of tuberculosis and their applications[J]. Mathematical Biosciences and Engineering, 2004, 1 (2): 361- 404. |
[1] | 韩梦洁,刘俊利. 具有不完全接种的反应扩散禽流感模型[J]. 《山东大学学报(理学版)》, 2023, 58(10): 106-121. |
[2] | 李晓伟,李桂花. 考虑环境病毒影响的COVID-19模型的动力学性态研究[J]. 《山东大学学报(理学版)》, 2023, 58(1): 10-15. |
[3] | 王非,杨亚莉,金英姬,曹书苗. 具有两个感染阶段和治疗及非线性发生率的HIV/AIDS模型的研究[J]. 《山东大学学报(理学版)》, 2019, 54(10): 67-73. |
[4] | 董婵, 张菊平, 李有文. 两斑块间具有种群动力学的#br# 疟疾传播模型研究[J]. 山东大学学报(理学版), 2014, 49(06): 74-78. |
[5] | 杨俊仙,徐丽*. 一类具非线性发生率和时滞的SIQS传染病模型的全局稳定性[J]. 山东大学学报(理学版), 2014, 49(05): 67-74. |
[6] | 董春燕,伏升茂. 一类害虫流行病控制模型非常数正平衡解的存在性[J]. J4, 2011, 46(3): 80-88. |
|