您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (10): 84-96.doi: 10.6040/j.issn.1671-9352.0.2022.543

•   • 上一篇    下一篇

一类具有预防接种的两菌株共感模型的传染病动力学分析

陈刚(),张睿*()   

  1. 兰州交通大学数理学院,甘肃 兰州 730070
  • 收稿日期:2022-10-10 出版日期:2023-10-20 发布日期:2023-10-17
  • 通讯作者: 张睿 E-mail:chencom@163.com;zhr639066@163.com
  • 作者简介:陈刚(1976—),男,硕士研究生,研究方向为微分方程与生物数学. E-mail: chencom@163.com

Dynamics of a two-strain co-infection epidemic model with vaccination

Gang CHEN(),Rui ZHANG*()   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Gansu 730070, Lanzhou, China
  • Received:2022-10-10 Online:2023-10-20 Published:2023-10-17
  • Contact: Rui ZHANG E-mail:chencom@163.com;zhr639066@163.com

摘要:

为了探讨多菌株在同一宿主群体有共同感染的传播动态,建立并分析了持续接种一种菌株疫苗后两菌株共同传播的动力学数学模型。首先通过对模型的计算和分析,得到4类平衡点存在的充分条件,除了无病平衡点和2个单株地方病平衡点以外,模型还存在菌株1、2都共存的地方病平衡点;其次,利用Lyapunov稳定性定理证明当2个菌株的基本再生数都小于1时,无病平衡点是全局稳定的。在确定单菌株地方病平衡点的稳定性时,引入了入侵再生数,当对应入侵再生数小于1时该菌株的地方病平衡点是局部稳定的;然后利用Castillo-Chavez和Song分支定理,证明了该模型不存在后向分支现象,进而证明了2个菌株的基本再生数都大于1时,共存平衡点是局部渐近稳定的;最后,通过数值模拟验证了以上的结论。

关键词: 多菌株, 共同感染, 基本再生数, 全局稳定性, 地方病平衡点, 入侵再生数

Abstract:

To explore the dynamics of co-infection of multiple strains in the same host population, a mathematical model of co-transmission dynamics of two strains after continuous inoculation with strain 1 vaccine is established and analyzed. Firstly, the sufficient conditions for the existence of four equilibrium points are obtained by calculating and analyzing the model. In addition to the disease-free equilibrium point and the two single endemic equilibrium points, the model also has an endemic equilibrium point where both strains 1 and 2 coexist. Secondly, Lyapunov stability theorem is used to prove that the disease-free equilibrium is globally stable when the basic reproduction number of two strains is less than 1. The invasion-reproduction number is introduced to determine the stability of the single-strain endemic equilibrium point. When the corresponding invasion reproduction number is less than 1, the endemic equilibrium point of the strain is locally stable. Then, using Castillo-Chavez and Song?s bifurcation theorem, it is proved that the model does not have backward bifurcation phenomenon, and then it is proved that the coexistence equilibrium point is locally asymptotically stable when the basic reproduction number of the two strains is greater than 1. Finally, the above conclusions are verified by numerical simulation.

Key words: multiple strains, co-infection, basic reproduction number, global stability, endemic equilibrium, invasion reproduction number

中图分类号: 

  • O175

图1

两菌株共感模型流程图"

表1

两菌株共感模型(1)的参数说明"

参数 参数描述 参数 参数描述
Λ 外来人口输入率 γ3 共感者同时对菌株1和菌株2的恢复率
μ 区域内人口自然死亡率 δ1β1 共感者对菌株2感染者的传播率
ρ 输入人口菌株1疫苗的接种率(ρ < 1) δ2β2 共感者对菌株1感染者的传播率
ν 单位时间菌株1疫苗持续的接种率 α1α2 菌株1、2感染者的恢复率
β1β2 菌株1/2感染者对易感人群的有效接触率 d1d2 菌株1、2感染者的因病致死率
β3 共感者同时对易感人群的菌株1,2的传播率 d3 共感者的因病致死率
γ1γ2 共感者对菌株1、2的恢复率 σ 恢复人群对免疫能力的消失率

表2

两菌株共感模型(1)参数模拟值"

参数 图 2(a)取值 图 2(b)取值 图 2(c)取值 图 2(d)取值
Λ 0.070 0.070 0.070 0.070
μ 3.5×10-5 3.5×10-5 3.5×10-5 3.5×10-5
ρ 5.0×10-3 5.0×10-3 5.0×10-3 5.0×10-3
ν 1.0×10-5 1.0×10-5 1.0×10-5 1.0×10-5
β1 0.050 0.040 0.060 0.013
β2 0.050 0.080 0.030 0.075
β3 0.050 0.015 0.020 0.050
γ1 0.045 0.030 0.030 0.030
γ2 0.030 0.025 0.025 0.038
γ3 0.020 0.050 0.050 0.050
δ1 0.800 0.800 1.100 0.800
δ2 0.600 0.400 1.300 0.400
α1 0.060 0.018 0.020 0.020
α2 0.060 0.025 0.035 0.030
d1 5.5×10-6 5.5×10-6 5.5×10-6 5.5×10-6
d2 5.5×10-6 5.5×10-6 5.5×10-6 5.5×10-6
d3 9.0×10-6 9.0×10-6 9.0×10-6 9.0×10-6
σ 0.080 0.080 0.080 0.080

图2

两菌株共感模型(1)的数值模拟"

1 BRAUER F , CASTILLO- CHÁVEZ C . Mathematical models in population biology and epidemiology[M]. 2nd ed. New York: Springer, 2012: 18- 25.
2 UNAIDS . Report on the global AIDS epidemic[M]. Geneva: World Health Organization, 2008: 11- 62.
3 皮特·布鲁克史密斯. 未来的灾难: 瘟疫复活与人类的生存之战[M]. 马永波, 译. 海口: 海南出版社, 1999: 17-184.
BROOKESMITH Peter. Future disaster: the resurrection of plague and the battle for human survival[M]. MA Yongbo, Translation. Haikou: Hainan Press, 1999: 17-184.
4 World Health Organization . World malaria situation in 1993[J]. Releve Epidemiologique Hebdomadaire, 1996, 71 (3): 17- 22.
5 UNAIDS , World Health Organization . Epidemiological Fact Sheet on HIV/AIDS and sexually transmitted infections[J]. Age, 2000, 30 (34): 45- 49.
6 MARTCHEVA M . An introduction to mathematical epidemiology[M]. Boston: Springer, 2015: 173- 174.
7 GETAHUN H , GUNNEBERG C , GRANICH R , et al. HIV infection-associated tuberculosis: the epidemiology and the response[J]. Clinical Infectious Diseases, 2010, 50 (Suppl.3): 201- 207.
8 KANG M , HOLLABAUGH K , PHAM V , et al. Virologic and serologic outcomes of mono versus dual HBV therapy and characterization of HIV/HBV coinfection in a US cohort[J]. Journal of Acquired Immune Deficiency Syndromes, 2014, 66 (2): 172- 180.
doi: 10.1097/QAI.0000000000000149
9 SHARP G B , KAWAOKA Y , JONES D J , et al. Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance[J]. Journal of Virology, 1997, 71 (8): 6128- 6135.
doi: 10.1128/jvi.71.8.6128-6135.1997
10 CHATURVEDI A K , KATKI H A , HILDESHEIM A , et al. Human papillomavirus infection with multiple types: pattern of coinfection and risk of cervical disease[J]. The Journal of Infectious Diseases, 2011, 203 (7): 910- 920.
doi: 10.1093/infdis/jiq139
11 ALLEN L J S , LANGLAIS M , PHILLIPS C J . The dynamics of two viral infections in a single host population with applications to hantavirus[J]. Mathematical Biosciences, 2003, 186 (2): 191- 217.
doi: 10.1016/j.mbs.2003.08.002
12 FERGUSON N , ANDERSON R , GUPTA S . The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96 (2): 790- 794.
13 KAWAGUCHI I , SASAKI A , BOOTS M . Why are dengue virus serotypes so distantly related? Enhancement and limiting serotype similarity between dengue virus strains[J]. Proceedings Biological Sciences, 2003, 270 (1530): 2241- 2247.
doi: 10.1098/rspb.2003.2440
14 ZHANG P , SANDLAND G J , FENG Z , et al. Evolutionary implications for interactions between multiple strains of host and parasite[J]. Journal of Theoretical Biology, 2007, 248 (2): 225- 240.
doi: 10.1016/j.jtbi.2007.05.011
15 HAUG S , LAKEW T , HABTEMARIAM G , et al. The decline of pneumococcal resistance after cessation of mass antibiotic distributions for trachoma[J]. Clinical Infectious Diseases, 2010, 51 (5): 571- 574.
doi: 10.1086/655697
16 LAKSHMIKANTHAM V , LEELA S , MARTYN I UK A A . Stability analysis of nonlinear systems[M]. New York: New York Dekker, 1989: 42- 43.
17 SMITH H L , WALTMAN P E . The theory of the chemostat: dynamics of microbial competition[M]. Cambridge: Cambridge University Press, 1995: 120.
18 VAN DEN DRIESSCHE P , WATMOUGH J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180 (1/2): 29- 48.
19 DIEKMANN O , HEESTERBEEK J A P , ROBERTS M G . The construction of next-generation matrices for compartmental epidemic models[J]. Journal of the Royal Society Interface, 2010, 7 (47): 873- 885.
doi: 10.1098/rsif.2009.0386
20 林支桂. 数学生态学导引[M]. 北京: 科学出版社, 2013: 19.
LIN Zhigui . Guidance of mathematical ecology[M]. Beijing: Science Press, 2013: 19.
21 CASTILLO-CHAVEZ C , SONG B J . Dynamical models of tuberculosis and their applications[J]. Mathematical Biosciences and Engineering, 2004, 1 (2): 361- 404.
[1] 韩梦洁,刘俊利. 具有不完全接种的反应扩散禽流感模型[J]. 《山东大学学报(理学版)》, 2023, 58(10): 106-121.
[2] 李晓伟,李桂花. 考虑环境病毒影响的COVID-19模型的动力学性态研究[J]. 《山东大学学报(理学版)》, 2023, 58(1): 10-15.
[3] 王非,杨亚莉,金英姬,曹书苗. 具有两个感染阶段和治疗及非线性发生率的HIV/AIDS模型的研究[J]. 《山东大学学报(理学版)》, 2019, 54(10): 67-73.
[4] 董婵, 张菊平, 李有文. 两斑块间具有种群动力学的#br# 疟疾传播模型研究[J]. 山东大学学报(理学版), 2014, 49(06): 74-78.
[5] 杨俊仙,徐丽*. 一类具非线性发生率和时滞的SIQS传染病模型的全局稳定性[J]. 山东大学学报(理学版), 2014, 49(05): 67-74.
[6] 董春燕,伏升茂. 一类害虫流行病控制模型非常数正平衡解的存在性[J]. J4, 2011, 46(3): 80-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 廖明哲. 哥德巴赫的两个猜想[J]. J4, 2013, 48(2): 1 -14 .
[2] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[3] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16 -23 .
[4] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[5] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[6] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[7] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[8] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[9] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[10] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .