《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 67-73.doi: 10.6040/j.issn.1671-9352.1.2019.037
• • 上一篇
王非1*,杨亚莉1,金英姬2,曹书苗3
WANG Fei1*, YANG Ya-li1, JIN Ying-ji2, CAO Shu-miao3
摘要: 基于HIV/AIDS的实际传播状况及治疗情况,建立了具有两个感染阶段和治疗的非线性发生率HIV/AIDS传染病数学模型。首先利用极限理论讨论了系统可行域的范围;其次通过构造再生矩阵得到基本再生数;然后对基本再生数的范围展开讨论,给出了平衡点的存在情况及个数;最后通过构造Lyapunov函数、利用Lasalle不变集、布森伯格定理和范登德莱西原理等证明了无病平衡点、地方病平衡点的局部性态和全局性态,并给出了数值模拟的结果。
中图分类号:
[1] STODDART C A, REYES R A. Models of HIV-1disease: a review of current status[J]. Drug Discovery Today: Disease Models, 2006, 3(1):113-119. [2] CONNELL MCCLUSKEY C. A model of HIV/AIDS with staged progression and amelioration[J]. Mathematical Biosciences, 2003, 181(1):1-16. [3] JAMES M Hyman, LI Jia. The reproductive number for an HIV model with differential infectivity and staged progression[J]. Linear Algebra and Its Applications, 2005, 398:101-116. [4] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math Biosci, 2002, 180(1/2):29-48. [5] Hossein Khriri, Mohsen Jafari. Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment[J]. Journal of Computation and Applied Mathematics, 2019, 346:323-339. [6] CAI Liming, LI Xuezhi, GHOSH Mini, et al. Stability analysis of an HIV/AIDS epidemic model with treatment[J]. Computational and Applied Mathematics, 2009, 229(1):313-323. [7] LI Jianquan, YANG Yali, ZHOU Yicang. Global stability of an epidemic model with latent stage and vaccination[J]. Nonlinear Analysis: Real World Applications, 2011, 12(4):2163-2173. [8] HUO Haifeng, CHEN Rui, WANG Xunyang. Modelling and stability of HIV/AIDS epidemic model with treatment[J]. Applied Mathematical Modelling, 2016, 40(13/14):6550-6559. [9] XIAO Yanni, TANG Sanyi, ZHOU Yicang. Predicting the HIV/AIDS epidemic and measuring the effect of mobility in mainland China[J]. Journal of Theoretical Biology, 2013, 317(1):271-285. [10] HUO Haifeng, FENG Lixiang. Global stability for an HIV/AIDS epidemic model with different latent stages and treatment[J]. Applied Mathematical Modelling, 2013, 37(3):1480-1489. [11] Ram Naresh, Agraj Tripathi, Dileep Sharma. A nonlinear HIV/AIDS model with contact tracing[J]. Applied Mathematics and Computation, 2011, 217(23):9575-9591. [12] LIU Huijuan, ZHANG Jiafang. Dynamics of two time delays differential equation model to HIV latent infection[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 514:384-395. [13] Olusegun Michael Otunuga. Global stability for a 2n+1 dimensional HIV/AIDS epidemic model with treatments[J]. Mathematical Biosciences, 2018, 299(1):138-152. [14] SANGEETA Saha, SAMANTA G P. Modeling and optimal control of HIV/AIDS prevention through PrEP and limited treatment[J]. Physica A: Statistical Mechanics and its Applications, 2019, 516(1):280-307. [15] RUAN Shigui, WANG Wendi. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. Journal of Differential Equations, 2003, 188(1):135-163. [16] ALEXANDER M E, MOGHADAS S M. Bifurcation analysis of an SIRS epidemic model with generalized incidence[J]. SIAM J Appl Math, 2005, 65(1):1794-1816. [17] Shastri Suresh, Burugina N Sharath, Shet Anita. TB-HIV co-infection among pregnant women in Karnataka, South India: A case series[J]. Journal of Infection and Public Health, 2016, 9(4):465-470. [18] LASALLE J P. The stability of dymamical systems[M]. Philadelphia: Regional Conference Series in Applied Mathematics SIMA, 1976. [19] YANG Youping, XIAO Yanni. Threshold dymamics for compartmental epidemic models with impulses[J]. Nonlinear Analysis: Real World Applications, 2012, 13(1):224-234. [20] CAI Liming, LI Xuezhi. Analysis of a SEIV epidemic model with a nonlinear incidence ratel[J]. Appl Math Mode, 2009, 33:2919-2926. [21] CAI Liming, GUO Shuli. Analysis of an extended HIV/AIDS epidemic model with treatment[J]. Applied Mathematics and Computation, 2014, 236:621-627. [22] CAI Liming, FANG Bin, LI Xuezhi. A note of a staged progression HIV model with imperfect vaccine[J]. Applied Mathematics and Computation, 2014, 234:412-416. |
[1] | 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122. |
[2] | 董婵, 张菊平, 李有文. 两斑块间具有种群动力学的#br# 疟疾传播模型研究[J]. 山东大学学报(理学版), 2014, 49(06): 74-78. |
[3] | 杨俊仙,徐丽*. 一类具非线性发生率和时滞的SIQS传染病模型的全局稳定性[J]. 山东大学学报(理学版), 2014, 49(05): 67-74. |
[4] | 董庆来. 具有比率型功能反应函数的随机恒化器#br# 系统的渐近性态[J]. 山东大学学报(理学版), 2014, 49(03): 68-72. |
[5] | 周艳丽1,2,张卫国1. 非线性传染率的随机SIS传染病模型的持久性和灭绝性[J]. J4, 2013, 48(10): 68-77. |
[6] | 姬文鹏,张天四*,徐丽筱. 一类病毒自身发生变异的随机传染病SIS模型全局正解的渐近行为[J]. J4, 2013, 48(05): 105-110. |
[7] | 鞠培军1,彭岩2,张卫1,田力1,刘国彩1,孔宪明1. Yang-Chen系统的全局指数吸引集及其在混沌控制中的应用[J]. J4, 2012, 47(7): 85-90. |
[8] | 梁霄, 王林山 . 一类S分布时滞递归神经网络的全局吸引子[J]. J4, 2009, 44(4): 57-60 . |
|