您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 67-73.doi: 10.6040/j.issn.1671-9352.1.2019.037

• • 上一篇    

具有两个感染阶段和治疗及非线性发生率的HIV/AIDS模型的研究

王非1*,杨亚莉1,金英姬2,曹书苗3   

  1. 1.空军工程大学基础部应用数学与军事密码教研室, 陕西 西安 710051;2.西藏民族大学教育学院, 陕西 咸阳 712082;3.西安建筑科技大学, 教育部西北水资源与生态环境重点实验室, 陕西 西安 710055
  • 发布日期:2019-10-12
  • 作者简介:王非(1981— ),女,硕士研究生,研究方向为生物数学. E-mail:wangfeishuxue@163.com*通信作者
  • 基金资助:
    国家自然科学基金资助项目(11661073);西藏自治区自然科学基金资助项目(2016ZR-15-19)

Study on nonlinear HIV/AIDS model with two infection stages treatment and incidence rate

WANG Fei1*, YANG Ya-li1, JIN Ying-ji2, CAO Shu-miao3   

  1. 1. Department of Applied Mathematics and Military Cryptography, Air Force Engineering University, Xian 710051, Shaanxi, China;
    2. College of Education, Tibetan University for Nationalities, Xianyang 712082, Shaanxi, China;
    3. Xian University of Architecture and Technology, Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xian 710055, Shaanxi, China
  • Published:2019-10-12

摘要: 基于HIV/AIDS的实际传播状况及治疗情况,建立了具有两个感染阶段和治疗的非线性发生率HIV/AIDS传染病数学模型。首先利用极限理论讨论了系统可行域的范围;其次通过构造再生矩阵得到基本再生数;然后对基本再生数的范围展开讨论,给出了平衡点的存在情况及个数;最后通过构造Lyapunov函数、利用Lasalle不变集、布森伯格定理和范登德莱西原理等证明了无病平衡点、地方病平衡点的局部性态和全局性态,并给出了数值模拟的结果。

关键词: HIV/AIDS, 非线性发生率, 基本再生数, LaSalle不变集原理, Lyapunov函数

Abstract: Based on the actual transmission and treatment, a mathematical model of HIV/AIDS with two infection stages, treatment and non-linear incidence is established in this paper.Then the range of the feasible region of the system is discussed by using the limit theory.Secondly, the basic regeneration number is obtained by constructing regeneration matrix, and the range of the basic regeneration number is discussed. The existence and number of equilibrium points are obtained.Finally, the local and global properties of equilibrium point are proved by constructing Lyapunov function, using Lasalle invariant set, Boosenberg theorem and Van den Lacy principle.

Key words: HIV/AIDS, nonlinear incidence, basic regeneration number, LaSalle invariant set principle, Lyapunov function

中图分类号: 

  • O175.1
[1] STODDART C A, REYES R A. Models of HIV-1disease: a review of current status[J]. Drug Discovery Today: Disease Models, 2006, 3(1):113-119.
[2] CONNELL MCCLUSKEY C. A model of HIV/AIDS with staged progression and amelioration[J]. Mathematical Biosciences, 2003, 181(1):1-16.
[3] JAMES M Hyman, LI Jia. The reproductive number for an HIV model with differential infectivity and staged progression[J]. Linear Algebra and Its Applications, 2005, 398:101-116.
[4] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math Biosci, 2002, 180(1/2):29-48.
[5] Hossein Khriri, Mohsen Jafari. Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment[J]. Journal of Computation and Applied Mathematics, 2019, 346:323-339.
[6] CAI Liming, LI Xuezhi, GHOSH Mini, et al. Stability analysis of an HIV/AIDS epidemic model with treatment[J]. Computational and Applied Mathematics, 2009, 229(1):313-323.
[7] LI Jianquan, YANG Yali, ZHOU Yicang. Global stability of an epidemic model with latent stage and vaccination[J]. Nonlinear Analysis: Real World Applications, 2011, 12(4):2163-2173.
[8] HUO Haifeng, CHEN Rui, WANG Xunyang. Modelling and stability of HIV/AIDS epidemic model with treatment[J]. Applied Mathematical Modelling, 2016, 40(13/14):6550-6559.
[9] XIAO Yanni, TANG Sanyi, ZHOU Yicang. Predicting the HIV/AIDS epidemic and measuring the effect of mobility in mainland China[J]. Journal of Theoretical Biology, 2013, 317(1):271-285.
[10] HUO Haifeng, FENG Lixiang. Global stability for an HIV/AIDS epidemic model with different latent stages and treatment[J]. Applied Mathematical Modelling, 2013, 37(3):1480-1489.
[11] Ram Naresh, Agraj Tripathi, Dileep Sharma. A nonlinear HIV/AIDS model with contact tracing[J]. Applied Mathematics and Computation, 2011, 217(23):9575-9591.
[12] LIU Huijuan, ZHANG Jiafang. Dynamics of two time delays differential equation model to HIV latent infection[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 514:384-395.
[13] Olusegun Michael Otunuga. Global stability for a 2n+1 dimensional HIV/AIDS epidemic model with treatments[J]. Mathematical Biosciences, 2018, 299(1):138-152.
[14] SANGEETA Saha, SAMANTA G P. Modeling and optimal control of HIV/AIDS prevention through PrEP and limited treatment[J]. Physica A: Statistical Mechanics and its Applications, 2019, 516(1):280-307.
[15] RUAN Shigui, WANG Wendi. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. Journal of Differential Equations, 2003, 188(1):135-163.
[16] ALEXANDER M E, MOGHADAS S M. Bifurcation analysis of an SIRS epidemic model with generalized incidence[J]. SIAM J Appl Math, 2005, 65(1):1794-1816.
[17] Shastri Suresh, Burugina N Sharath, Shet Anita. TB-HIV co-infection among pregnant women in Karnataka, South India: A case series[J]. Journal of Infection and Public Health, 2016, 9(4):465-470.
[18] LASALLE J P. The stability of dymamical systems[M]. Philadelphia: Regional Conference Series in Applied Mathematics SIMA, 1976.
[19] YANG Youping, XIAO Yanni. Threshold dymamics for compartmental epidemic models with impulses[J]. Nonlinear Analysis: Real World Applications, 2012, 13(1):224-234.
[20] CAI Liming, LI Xuezhi. Analysis of a SEIV epidemic model with a nonlinear incidence ratel[J]. Appl Math Mode, 2009, 33:2919-2926.
[21] CAI Liming, GUO Shuli. Analysis of an extended HIV/AIDS epidemic model with treatment[J]. Applied Mathematics and Computation, 2014, 236:621-627.
[22] CAI Liming, FANG Bin, LI Xuezhi. A note of a staged progression HIV model with imperfect vaccine[J]. Applied Mathematics and Computation, 2014, 234:412-416.
[1] 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122.
[2] 董婵, 张菊平, 李有文. 两斑块间具有种群动力学的#br# 疟疾传播模型研究[J]. 山东大学学报(理学版), 2014, 49(06): 74-78.
[3] 杨俊仙,徐丽*. 一类具非线性发生率和时滞的SIQS传染病模型的全局稳定性[J]. 山东大学学报(理学版), 2014, 49(05): 67-74.
[4] 董庆来. 具有比率型功能反应函数的随机恒化器#br# 系统的渐近性态[J]. 山东大学学报(理学版), 2014, 49(03): 68-72.
[5] 周艳丽1,2,张卫国1. 非线性传染率的随机SIS传染病模型的持久性和灭绝性[J]. J4, 2013, 48(10): 68-77.
[6] 姬文鹏,张天四*,徐丽筱. 一类病毒自身发生变异的随机传染病SIS模型全局正解的渐近行为[J]. J4, 2013, 48(05): 105-110.
[7] 鞠培军1,彭岩2,张卫1,田力1,刘国彩1,孔宪明1. Yang-Chen系统的全局指数吸引集及其在混沌控制中的应用[J]. J4, 2012, 47(7): 85-90.
[8] 梁霄, 王林山 . 一类S分布时滞递归神经网络的全局吸引子[J]. J4, 2009, 44(4): 57-60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!