您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (11): 115-122.doi: 10.6040/j.issn.1671-9352.0.2016.282

• • 上一篇    下一篇

具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性

付娟,张睿,王彩军,张婧   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 收稿日期:2016-06-17 出版日期:2016-11-20 发布日期:2016-11-22
  • 作者简介:付娟(1990— ), 女, 硕士研究生, 研究方向为生物数学. E-mail:1010545137@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11561041,61563026)

The stability of a predator-prey diffusion model with Beddington-DeAngelis functional response

FU Juan, ZHANG Rui, WANG Cai-jun, ZHANG Jing   

  1. Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Received:2016-06-17 Online:2016-11-20 Published:2016-11-22

摘要: 考虑了一类带有扩散的Beddington-DeAngelis捕食者-食饵模型。 通过线性化方法和构造Lyapunov函数得到弱耦合反应扩散系统非负平衡点的局部和全局渐近稳定性; 分析了交错扩散系统对非负平衡点稳定性的影响, 并且得到了交错扩散导致Turing不稳定的区域。

关键词: 自扩散, 交错扩散, 稳定性, Lyapunov函数, 捕食者-食饵模型

Abstract: We consider a diffusive predator-prey model with Beddington-DeAngelis functional response. First, the local and global asymptotic stabilities of the nonnegative equilibrium point of weakly coupled reaction-diffusion system are obtained by linearization and constructing Lyapunov function. Secondly, the effect of cross-diffusion coefficient on the stability of the nonnegative equilibrium point is discussed. The results show that cross-diffusion can induce Turing unstable region.

Key words: self-diffusion, stability, cross-diffusion, lyapunov function, predator-prey model

中图分类号: 

  • O175.29
[1] BEDDINGTON J R. Mutual interference between parasites or predator and its effect on seraching efficiency[J]. J Animal Ecol, 1975, 44(1):331-340.
[2] DEANGELIS D L, GOLDSTEIN R A, ONEILL R V. A model for trophic interaction[J]. Ecology, 1975, 56(4):881-892.
[3] CANTRELL R S, COSNER C. On the dynamics of predator-prey models with the Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2001, 257(1):206-222.
[4] HWANG T W. Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2003, 281(1):395-401.
[5] HWANG T W. Uniqueness of limit cycles analysis of the predator-prey system with Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2004, 290(1):113-122.
[6] MENG Fan, YANG Kuang. Dynamics of a non-autonomous predator-prey system with the Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2004, 295(1):15-39.
[7] LIU Zhihua, YUAN Rong. Stability and bifurcation in a delayed predator-prey system with Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2004, 296(2):521-537.
[8] LIU Shengqiang, ZHANG Jianhua. Coexistence and stability of predator-prey model with Beddington-DeAngelis functional response and stage structure[J]. J Math Anal Appl, 2008, 342(1):446-460.
[9] GUO Gaihui, WU Jianhua. Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response[J]. Nonlinear Anal, 2010, 72(3/4):1632-1646.
[10] NIE Hua, WU Jianhua. Coexistence of an unstirred chemostat model with Beddington-DeAngelis functional response and inhibitor[J]. Nonlinear Anal Real World Appl, 2010, 11(5):3639-3652.
[11] CHEN Wenyan, WANG Mingxin. Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion[J]. Mathematical and Computer Modelling, 2005, 42(1/2):31-34.
[12] SHI Junping, XIE Zhifu, LITTLE K. Cross-diffusion induced instability and stability in reaction-diffusion systems[J]. J Appl Anal Comput, 2011, 1(1):95-119.
[13] WANG Weiming, WANG Wenjuan, LIN Yezhi, et al. Pattern selection in a predation model with self and cross diffusion[J]. Chin Phys B, 2011, 20(3):1656-1674.
[14] FU Shengao, ZHANG Lina, HU Ping. Global behavior of solutions in a Lotka-Volterra predator-prey model with prey-stage structure[J]. Nonlinear Analysis, 2013(14):2027-2045.
[15] 王明新. 非线性型抛物方程[M]. 北京: 科学出版社, 1993. WANG Mingxin. Nonlinear parabolic equation[M]. Beijing: Science Press, 1993.
[1] 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38.
[2] 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24.
[3] 白宝丽,张建刚,杜文举,闫宏明. 一类随机的SIR流行病模型的动力学行为分析[J]. 山东大学学报(理学版), 2017, 52(4): 72-82.
[4] 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31.
[5] 张道祥, 赵李鲜, 胡伟. 一类三种群食物链模型中交错扩散引起的Turing不稳定[J]. 山东大学学报(理学版), 2017, 52(1): 88-97.
[6] 薛文萍,纪培胜. 混合AQC函数方程在FFNLS上的HUR稳定性[J]. 山东大学学报(理学版), 2016, 51(4): 1-8.
[7] 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134.
[8] 武婧媛,石瑞青. 一类包含媒体报道的SEQIHRS传染病模型的分析[J]. 山东大学学报(理学版), 2016, 51(1): 115-122.
[9] 林青腾,魏凤英. 具有饱和发病率随机SIQS传染病模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(1): 128-134.
[10] 李向良, 孙艳阁, 李英. CO2水基泡沫的稳定机理研究[J]. 山东大学学报(理学版), 2015, 50(11): 32-39.
[11] 王先飞, 江龙, 马娇娇. 具有Osgood型生成元的多维倒向重随机微分方程[J]. 山东大学学报(理学版), 2015, 50(08): 24-33.
[12] 方瑞, 马娇娇, 范胜君. 一类倒向随机微分方程解的稳定性定理[J]. 山东大学学报(理学版), 2015, 50(06): 39-44.
[13] 王春生, 李永明. 中立型多变时滞随机微分方程的稳定性[J]. 山东大学学报(理学版), 2015, 50(05): 82-87.
[14] 杨文彬, 李艳玲. 一类具有非单调生长率的捕食-食饵系统的动力学[J]. 山东大学学报(理学版), 2015, 50(03): 80-87.
[15] 綦伟青, 纪培胜, 卢海宁. 二元三次函数方程的解及在模糊Banach 空间上的稳定性[J]. 山东大学学报(理学版), 2015, 50(02): 60-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!