您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (7): 30-38.doi: 10.6040/j.issn.1671-9352.0.2018.018

• • 上一篇    下一篇

一类离散宿主-寄生物模型动态研究

刘华1,叶勇1,魏玉梅2*,杨鹏1,马明1,冶建华1,马娅磊1   

  1. 1.西北民族大学数学与计算机科学学院, 甘肃 兰州 730030;2.西北民族大学实验中心, 甘肃 兰州 730030
  • 收稿日期:2018-01-17 出版日期:2018-07-20 发布日期:2018-07-03
  • 作者简介:刘华(1977— ),男,博士,教授,研究方向为生态数学及计算机模拟. E-mail:liuhuaemail@foxmail.com*通信作者简介:魏玉梅(1989— ),女,高级实验师,研究方向为应用生物学. E-mail:649118046@qq.com
  • 基金资助:
    国家自然科学基金资助项目(31260098,11361049,31560127);西北民族大学中央高校基本科研业务费资金资助项目(31920180116,31920180044,31920170072);国家民委中青年英才计划资助项目(〔2014〕121号);甘肃省科技计划项目资助(1610RJZA102);西北民族大学“双一流”和特色发展引导专项资金资助项目;西北民族大学2018年度实验室开放项目(SYSKF-2018225,SYSKF-2018236)

Study of dynamic of a discrete host-parasitoid model

LIU Hua1, YE Yong1, WEI Yu-mei2*, YANG Peng1, MA Ming1, YE Jian-hua1, MA Ya-lei1   

  1. 1. School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, Gansu, China;
    2. The Experiment Center, Northwest Minzu University, Lanzhou 730030, Gansu, China
  • Received:2018-01-17 Online:2018-07-20 Published:2018-07-03

摘要: 通过建立一类具有Allee效应和HollingⅢ型功能反应函数的宿主-寄生物模型,讨论了平衡点的局部稳定性与持久性。通过计算机模拟,以内禀增长率r作为分岔图的参数,模拟Allee效应对模型动态行为的产生的影响。研究结果发现:在同时具有Allee效应和HollingⅢ型功能反应的模型系统中,引入 Allee效应会加速种群走向灭绝,当系统受强Allee效应会减少系统混沌动态。

关键词: HollingⅢ型功能反应, 分岔图, Allee效应, 持久性, 稳定性

Abstract: A host-parasitoid model with Allee effect and Holling Ⅲ functional response function was established, and the local stability and persistence of equilibria was discussed. The influence of the Allee effect on the dynamic behavior of the model is simulated by the computer simulation and the intrinsic growth rate r as the parameter of the bifurcation diagram. We found that the introduction of Allee effect will accelerate the extinction of population in the model with both Allee effect and Holling Ⅲ functional response. When the system is strong Allee, the chaotic dynamics of the system will be reduced.

Key words: stability, persistence, bifurcation diagram, Holling Ⅲ functional response, Allee effect

中图分类号: 

  • O29
[1] ALLEE W C. Animal aggregations: a study in general sociology[M]. Chicago: University of Chicago Press, 1931.
[2] ALLEE W C, EMERSON A E, PARK O, et al. Principles of animal ecology[M]. Philadlphia: W B Saunders, 1949.
[3] COURCHAMP F, BEREC L, GASCOIGNE J. Allee effects in ecology and conservation[M]. Oxford: Oxford University Press, 2008.
[4] LIU Hua, LI Zizhen, GAO Meng, et al. Dynamic complexities in a host-parasitoid model with Allee effect for the host and parasitoid aggregation[J]. Ecological Complexity, 2009, 6(3):337-345.
[5] 蒋芮, 刘华, 谢梅,等. 具有HollingⅡ型功能反应和Allee效应的捕食系统模型[J]. 高校应用数学学报, 2016,31(4):441-450. JIANG Rui, LIU Hua, XIE Mei, et al. A predator-prey system model with Holling II functional response and Allee effect[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4):441-450.
[6] DIN Q. Qualitative analysis and chaos control in a density-dependent host-parasitoid system[J]. International Journal of Dynamics & Control, 2017(3):1-21.
[7] DIN Q. Global stability of Beddington model[J]. Qualitative Theory of Dynamical Systems, 2016, 16(2):1-25.
[8] LIU Xijuan, CHU Yandong, LIU Yun. Bifurcation and chaos in a host-parasitoid model with a lower bound for the host[J]. Advances in Difference Equations, 2018, 2018(1):31(1-15).
[9] MORAN P A P. Some remarks on animal population dynamics[J]. Biometrics, 1950, 6(3):250-258.
[10] RICKER W E. Stock and recruitment[J]. J Fish Res Board Can, 1954(11):559-623.
[11] LV Songjuan, ZHAO Min. The dynamic complexity of a three species food chain model[J]. Chaos Solitons and Fractals, 2006, 10(57):1-12.
[12] BEDDINGTON J R, FREE C A, LAWTON J H. Dynamic complexity in predator-prey models framed in difference equations[J]. Nature, 1975, 255(5503):58-60.
[13] HOLLING C S. The functional response of predators to prey density and its role in mimicry and population regulation[J]. Mem Entomol Soc Can, 1965, 97(45):1-60.
[14] TANG Sanyi, CHEN Lansun. Chaos in functional response host-parasitoid ecosystem models[J]. Chaos Solitons and Fractals, 2002, 13(4):875-884.
[15] MAY R M. Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261(5560):459-467.
[16] OATEN A, MURDOCH W W. Functional response and stability in predator-prey systems[J]. Am Nat, 1975, 109(967):299-318.
[17] MURDOCH W W, OATEN A. Predation and population stability[J]. Adv ecol Res, 1975, 9:1-131.
[18] CHEN Fengde. Permanence for the discrete mutualism model with time delays[J]. Mathematical & Computer Modelling, 2008, 47(3):431-435.
[1] 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24.
[2] 张道祥,胡伟,陶龙,周文. 一类具有不同发生率的双疾病随机SIS传染病模型的动力学研究[J]. 山东大学学报(理学版), 2017, 52(5): 10-17.
[3] 白宝丽,张建刚,杜文举,闫宏明. 一类随机的SIR流行病模型的动力学行为分析[J]. 山东大学学报(理学版), 2017, 52(4): 72-82.
[4] 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31.
[5] 薛文萍,纪培胜. 混合AQC函数方程在FFNLS上的HUR稳定性[J]. 山东大学学报(理学版), 2016, 51(4): 1-8.
[6] 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134.
[7] 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122.
[8] 武婧媛,石瑞青. 一类包含媒体报道的SEQIHRS传染病模型的分析[J]. 山东大学学报(理学版), 2016, 51(1): 115-122.
[9] 林青腾,魏凤英. 具有饱和发病率随机SIQS传染病模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(1): 128-134.
[10] 张瑞玲, 王万雄, 秦丽娟. 具有强Allee效应的2-物种的囚徒困境博弈[J]. 山东大学学报(理学版), 2015, 50(11): 98-103.
[11] 李向良, 孙艳阁, 李英. CO2水基泡沫的稳定机理研究[J]. 山东大学学报(理学版), 2015, 50(11): 32-39.
[12] 李海侠. 带有保护区域的加法Allee效应捕食-食饵模型的共存解[J]. 山东大学学报(理学版), 2015, 50(09): 88-94.
[13] 王先飞, 江龙, 马娇娇. 具有Osgood型生成元的多维倒向重随机微分方程[J]. 山东大学学报(理学版), 2015, 50(08): 24-33.
[14] 方瑞, 马娇娇, 范胜君. 一类倒向随机微分方程解的稳定性定理[J]. 山东大学学报(理学版), 2015, 50(06): 39-44.
[15] 王春生, 李永明. 中立型多变时滞随机微分方程的稳定性[J]. 山东大学学报(理学版), 2015, 50(05): 82-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!