山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (7): 30-38.doi: 10.6040/j.issn.1671-9352.0.2018.018
刘华1,叶勇1,魏玉梅2*,杨鹏1,马明1,冶建华1,马娅磊1
LIU Hua1, YE Yong1, WEI Yu-mei2*, YANG Peng1, MA Ming1, YE Jian-hua1, MA Ya-lei1
摘要: 通过建立一类具有Allee效应和HollingⅢ型功能反应函数的宿主-寄生物模型,讨论了平衡点的局部稳定性与持久性。通过计算机模拟,以内禀增长率r作为分岔图的参数,模拟Allee效应对模型动态行为的产生的影响。研究结果发现:在同时具有Allee效应和HollingⅢ型功能反应的模型系统中,引入 Allee效应会加速种群走向灭绝,当系统受强Allee效应会减少系统混沌动态。
中图分类号:
[1] ALLEE W C. Animal aggregations: a study in general sociology[M]. Chicago: University of Chicago Press, 1931. [2] ALLEE W C, EMERSON A E, PARK O, et al. Principles of animal ecology[M]. Philadlphia: W B Saunders, 1949. [3] COURCHAMP F, BEREC L, GASCOIGNE J. Allee effects in ecology and conservation[M]. Oxford: Oxford University Press, 2008. [4] LIU Hua, LI Zizhen, GAO Meng, et al. Dynamic complexities in a host-parasitoid model with Allee effect for the host and parasitoid aggregation[J]. Ecological Complexity, 2009, 6(3):337-345. [5] 蒋芮, 刘华, 谢梅,等. 具有HollingⅡ型功能反应和Allee效应的捕食系统模型[J]. 高校应用数学学报, 2016,31(4):441-450. JIANG Rui, LIU Hua, XIE Mei, et al. A predator-prey system model with Holling II functional response and Allee effect[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4):441-450. [6] DIN Q. Qualitative analysis and chaos control in a density-dependent host-parasitoid system[J]. International Journal of Dynamics & Control, 2017(3):1-21. [7] DIN Q. Global stability of Beddington model[J]. Qualitative Theory of Dynamical Systems, 2016, 16(2):1-25. [8] LIU Xijuan, CHU Yandong, LIU Yun. Bifurcation and chaos in a host-parasitoid model with a lower bound for the host[J]. Advances in Difference Equations, 2018, 2018(1):31(1-15). [9] MORAN P A P. Some remarks on animal population dynamics[J]. Biometrics, 1950, 6(3):250-258. [10] RICKER W E. Stock and recruitment[J]. J Fish Res Board Can, 1954(11):559-623. [11] LV Songjuan, ZHAO Min. The dynamic complexity of a three species food chain model[J]. Chaos Solitons and Fractals, 2006, 10(57):1-12. [12] BEDDINGTON J R, FREE C A, LAWTON J H. Dynamic complexity in predator-prey models framed in difference equations[J]. Nature, 1975, 255(5503):58-60. [13] HOLLING C S. The functional response of predators to prey density and its role in mimicry and population regulation[J]. Mem Entomol Soc Can, 1965, 97(45):1-60. [14] TANG Sanyi, CHEN Lansun. Chaos in functional response host-parasitoid ecosystem models[J]. Chaos Solitons and Fractals, 2002, 13(4):875-884. [15] MAY R M. Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261(5560):459-467. [16] OATEN A, MURDOCH W W. Functional response and stability in predator-prey systems[J]. Am Nat, 1975, 109(967):299-318. [17] MURDOCH W W, OATEN A. Predation and population stability[J]. Adv ecol Res, 1975, 9:1-131. [18] CHEN Fengde. Permanence for the discrete mutualism model with time delays[J]. Mathematical & Computer Modelling, 2008, 47(3):431-435. |
[1] | 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24. |
[2] | 张道祥,胡伟,陶龙,周文. 一类具有不同发生率的双疾病随机SIS传染病模型的动力学研究[J]. 山东大学学报(理学版), 2017, 52(5): 10-17. |
[3] | 白宝丽,张建刚,杜文举,闫宏明. 一类随机的SIR流行病模型的动力学行为分析[J]. 山东大学学报(理学版), 2017, 52(4): 72-82. |
[4] | 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31. |
[5] | 薛文萍,纪培胜. 混合AQC函数方程在FFNLS上的HUR稳定性[J]. 山东大学学报(理学版), 2016, 51(4): 1-8. |
[6] | 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134. |
[7] | 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122. |
[8] | 武婧媛,石瑞青. 一类包含媒体报道的SEQIHRS传染病模型的分析[J]. 山东大学学报(理学版), 2016, 51(1): 115-122. |
[9] | 林青腾,魏凤英. 具有饱和发病率随机SIQS传染病模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(1): 128-134. |
[10] | 张瑞玲, 王万雄, 秦丽娟. 具有强Allee效应的2-物种的囚徒困境博弈[J]. 山东大学学报(理学版), 2015, 50(11): 98-103. |
[11] | 李向良, 孙艳阁, 李英. CO2水基泡沫的稳定机理研究[J]. 山东大学学报(理学版), 2015, 50(11): 32-39. |
[12] | 李海侠. 带有保护区域的加法Allee效应捕食-食饵模型的共存解[J]. 山东大学学报(理学版), 2015, 50(09): 88-94. |
[13] | 王先飞, 江龙, 马娇娇. 具有Osgood型生成元的多维倒向重随机微分方程[J]. 山东大学学报(理学版), 2015, 50(08): 24-33. |
[14] | 方瑞, 马娇娇, 范胜君. 一类倒向随机微分方程解的稳定性定理[J]. 山东大学学报(理学版), 2015, 50(06): 39-44. |
[15] | 王春生, 李永明. 中立型多变时滞随机微分方程的稳定性[J]. 山东大学学报(理学版), 2015, 50(05): 82-87. |
|