山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (09): 88-94.doi: 10.6040/j.issn.1671-9352.0.2014.582
• 论文 • 上一篇
李海侠
LI Hai-xia
摘要: 讨论了一类带有保护区域和加法Allee效应的扩散捕食-食饵模型。首先讨论了平凡解和半平凡解的稳定性, 接着考察了非常数正解的不存在性, 最后运用全局分歧理论得到了非常数正解的存在性条件。研究结果表明,在弱Allee效应下,当扩散系数适当且参数满足一定条件时,两物种能共存而且共存解稳定;当扩散系数充分大时两物种不共存。
中图分类号:
[1] WANG J F, SHI J P, WEI J. Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey[J]. J Differential Equations, 2011,251(4):1276-1304. [2] 臧辉,聂华. 一类具有强Alllee效应的捕食-食饵模型正平衡态解的存在性[J]. 陕西师范大学学报:自然科学版, 2013, 41(5):5-10. ZANG H, NIE H. The existence of positive steady-state solutions of a class predator-prey models with strong Allee effect[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2013, 41(5):5-10. [3] CAI Y L, LIU W B, WANG Y B, et al. Complex dynamics of a diffusive epidemic model with strong Allee effect[J]. Nonlinear Analysis:Real World Applications, 2013, 14(4):1907-1920. [4] AGUIRRE P, FLORES D, GONZÁLEZ-OLIVARES E. Bifurcations and global dynamics in a predator-prey model with a strong Allee effect on the prey, and a ratio-dependent functional response[J]. Nonlinear Analysis:Real World Applications, 2014, 16(1):235-249. [5] PALLAV P, PRASHANTA M. Bifurcation analysis of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and strong Allee effect[J]. Mathematics and Computers in Simulation, 2014, 97:123-146. [6] YANG L, ZHONG S. Dynamics of a diffusive predator—prey model with modified Leslie—Gower schemes and additive Allee effect[J]. Computational and Applied Mathematics, 2014, DOI:10.1007/s40314-014-0131-1 [7] WANG W M, ZHU Y N, CAI Y L. Dynamical complexity induced by Allee effect in a predator-prey model[J]. Nonlinear Analysis:Real World Applications, 2014, 16:103-119. [8] DU Y H, SHI J P. A diffusive predator-prey model with a protection zone[J]. J Differential Equations, 2006, 229(1):63-91. [9] DU Y H, PENG R, WANG M X. Effect of a protection zone in the diffusive Leslie predator-prey model[J]. J Differential Equations, 2009, 246(10):3932-3956. [10] DU Y H, LIANG X. A diffusive competition model with a protection zone[J]. J Differential Equations, 2008, 224(1):61-86. [11] CHEN B, WANG M X. Qualitative analysis for a diffusive predator-prey model[J]. Comput Math Appl, 2008, 55(3):339-355. [12] ZHOU J, SHI J P.The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses[J].J Math Anal Appl, 2013, 405(2):618-630. [13] LI H X. Asymptotic behavior and multiplicity for a diffusive Leslie-Gower predator-prey system with Crowley-Martin functional response[J]. Computers and Mathematics with Applications, 2014, 68(7):693-705. [14] WANG M X. Nonlinear Elliptic Equations[M]. Beijing:Science Press, 2010. [15] CRANDALL M G, RABINOWITZ P H. Bifurcation from simple eigenvalue[J]. J Funct Anal, 1971, 8(2):321-340. [16] WU J H. Global bifurcation of coexistence state for the competition model in the chemostat[J]. Nonlinear Analysis, 2000, 39(7):817-835. [17] RABINOWITZ P H. Some global results for nonlinear eigenvalue problems[J]. Journal of Functional Analysis, 1971, 7(3):487-513. |
[1] | 李晓燕,徐嫚. 二阶脉冲微分方程Dirichlet问题非平凡解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 29-35. |
[2] | 张露,马如云. 渐近线性二阶半正离散边值问题正解的分歧结构[J]. 山东大学学报(理学版), 2014, 49(03): 79-83. |
|