您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (09): 88-94.doi: 10.6040/j.issn.1671-9352.0.2014.582

• 论文 • 上一篇    

带有保护区域的加法Allee效应捕食-食饵模型的共存解

李海侠   

  1. 宝鸡文理学院数学与信息科学学院, 陕西 宝鸡 721013
  • 收稿日期:2014-12-26 修回日期:2015-03-06 出版日期:2015-09-20 发布日期:2015-09-26
  • 作者简介:李海侠(1977-),女,讲师,博士,研究方向为偏微分方程及计算可视化. E-mail:xiami0820@163.com
  • 基金资助:
    国家自然科学基金资助项目(11401356); 陕西省教育厅专项科研计划资助项目(14JK1035);宝鸡文理学院重点科研资助项目(ZK15039)

Coexistence solutions for a predator-prey model with additive Allee effect and a protection zone

LI Hai-xia   

  1. School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, Shaanxi, China
  • Received:2014-12-26 Revised:2015-03-06 Online:2015-09-20 Published:2015-09-26

摘要: 讨论了一类带有保护区域和加法Allee效应的扩散捕食-食饵模型。首先讨论了平凡解和半平凡解的稳定性, 接着考察了非常数正解的不存在性, 最后运用全局分歧理论得到了非常数正解的存在性条件。研究结果表明,在弱Allee效应下,当扩散系数适当且参数满足一定条件时,两物种能共存而且共存解稳定;当扩散系数充分大时两物种不共存。

关键词: 保护区域, 加法Allee效应, 分歧理论

Abstract: A diffusive predator-prey model with additive Allee effect and a protection zone is discussed. Firstly, the stability of trivial and semi-trivial solutions is investigated. Secondly, the non-existence of non-constant positive solutions is determined. Finally, the existence of non-constant positive solutions is obtained by using the global bifurcation theory. Under weakly Allee effect, the results indicate that the two species will coexist and the coexistence solutions are stable when the diffusion coefficient is suitably chosen and the parameters satisfy certain conditions. Furthermore, the two species cannot coexist when the diffusion coefficients are sufficiently large.

Key words: protection zone, bifurcation theory, additive Allee effect

中图分类号: 

  • O175.26
[1] WANG J F, SHI J P, WEI J. Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey[J]. J Differential Equations, 2011,251(4):1276-1304.
[2] 臧辉,聂华. 一类具有强Alllee效应的捕食-食饵模型正平衡态解的存在性[J]. 陕西师范大学学报:自然科学版, 2013, 41(5):5-10. ZANG H, NIE H. The existence of positive steady-state solutions of a class predator-prey models with strong Allee effect[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2013, 41(5):5-10.
[3] CAI Y L, LIU W B, WANG Y B, et al. Complex dynamics of a diffusive epidemic model with strong Allee effect[J]. Nonlinear Analysis:Real World Applications, 2013, 14(4):1907-1920.
[4] AGUIRRE P, FLORES D, GONZÁLEZ-OLIVARES E. Bifurcations and global dynamics in a predator-prey model with a strong Allee effect on the prey, and a ratio-dependent functional response[J]. Nonlinear Analysis:Real World Applications, 2014, 16(1):235-249.
[5] PALLAV P, PRASHANTA M. Bifurcation analysis of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and strong Allee effect[J]. Mathematics and Computers in Simulation, 2014, 97:123-146.
[6] YANG L, ZHONG S. Dynamics of a diffusive predator—prey model with modified Leslie—Gower schemes and additive Allee effect[J]. Computational and Applied Mathematics, 2014, DOI:10.1007/s40314-014-0131-1
[7] WANG W M, ZHU Y N, CAI Y L. Dynamical complexity induced by Allee effect in a predator-prey model[J]. Nonlinear Analysis:Real World Applications, 2014, 16:103-119.
[8] DU Y H, SHI J P. A diffusive predator-prey model with a protection zone[J]. J Differential Equations, 2006, 229(1):63-91.
[9] DU Y H, PENG R, WANG M X. Effect of a protection zone in the diffusive Leslie predator-prey model[J]. J Differential Equations, 2009, 246(10):3932-3956.
[10] DU Y H, LIANG X. A diffusive competition model with a protection zone[J]. J Differential Equations, 2008, 224(1):61-86.
[11] CHEN B, WANG M X. Qualitative analysis for a diffusive predator-prey model[J]. Comput Math Appl, 2008, 55(3):339-355.
[12] ZHOU J, SHI J P.The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses[J].J Math Anal Appl, 2013, 405(2):618-630.
[13] LI H X. Asymptotic behavior and multiplicity for a diffusive Leslie-Gower predator-prey system with Crowley-Martin functional response[J]. Computers and Mathematics with Applications, 2014, 68(7):693-705.
[14] WANG M X. Nonlinear Elliptic Equations[M]. Beijing:Science Press, 2010.
[15] CRANDALL M G, RABINOWITZ P H. Bifurcation from simple eigenvalue[J]. J Funct Anal, 1971, 8(2):321-340.
[16] WU J H. Global bifurcation of coexistence state for the competition model in the chemostat[J]. Nonlinear Analysis, 2000, 39(7):817-835.
[17] RABINOWITZ P H. Some global results for nonlinear eigenvalue problems[J]. Journal of Functional Analysis, 1971, 7(3):487-513.
[1] 李晓燕,徐嫚. 二阶脉冲微分方程Dirichlet问题非平凡解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 29-35.
[2] 张露,马如云. 渐近线性二阶半正离散边值问题正解的分歧结构[J]. 山东大学学报(理学版), 2014, 49(03): 79-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!