您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (10): 106-121.doi: 10.6040/j.issn.1671-9352.0.2022.666

•   • 上一篇    下一篇

具有不完全接种的反应扩散禽流感模型

韩梦洁(),刘俊利*()   

  1. 西安工程大学理学院, 陕西 西安 710048
  • 收稿日期:2022-12-16 出版日期:2023-10-20 发布日期:2023-10-17
  • 通讯作者: 刘俊利 E-mail:hmj3040508337@163.com;jlliu2008@126.com
  • 作者简介:韩梦洁(1998—), 女, 硕士研究生, 研究方向为生物数学. E-mail: hmj3040508337@163.com
  • 基金资助:
    国家自然科学基金资助项目(11801431);陕西省自然科学基础研究计划项目(2021JM-445)

A reaction-diffusion model of avian influenza with imperfect vaccination

Mengjie HAN(),Junli LIU*()   

  1. School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
  • Received:2022-12-16 Online:2023-10-20 Published:2023-10-17
  • Contact: Junli LIU E-mail:hmj3040508337@163.com;jlliu2008@126.com

摘要:

考虑鸟类流动性和环境异质性, 建立具有不完全接种的反应扩散禽流感模型, 研究鸟类中禽流感的传播动态。首先证明模型解的全局存在性, 其次利用下一代算子的谱半径方法计算模型的基本再生数, 分析模型的阈值动力学。此外, 考虑疫苗对鸟类起到100%预防作用的情况, 给出基本再生数和主特征值的显式表达式, 研究了病毒的灭绝和持续性。最后进行数值模拟, 分析禽流感的传播动力学并研究禽流感爆发的有效控制策略。结果表明, 提高鸟类接种疫苗的覆盖率, 及时对环境进行消毒, 清除环境中的禽流感病毒, 减少鸟类流动性对控制禽流感的传播是非常有效的。

关键词: 禽流感, 反应扩散模型, 基本再生数, 持久性

Abstract:

In this paper, a model of avian influenza with imperfect vaccination reaction-diffusion is established to study the transmission dynamics of avian influenza in birds considering the mobility of birds and environmental heterogeneity. The global existence of the solution of the model is proved, then the basic reproduction number of the model is calculated using the spectral radius of the next generation operator, and the threshold dynamics of the model are analyzed. We also consider the case where the vaccine has 100% preventive effect on birds, the explicit expressions of the basic reproduction number and the principal eigenvalue are given, extinction and persistence of viruses are investigated. Finally, numerical simulations are carried out to analyze the transmission dynamics of avian influenza, effective control strategies for the outbreaks of avian influenza are also discussed. It shows that increasing the coverage of bird vaccination, disinfecting the environment, removing the avian influenza virus in the environment, and reducing the migration of birds are very effective to control the spread of avian influenza.

Key words: avian influenza, reaction-diffusion model, basic reproduction number, persistence

中图分类号: 

  • O175.2

表1

系统(1.4)—(1.6)参数值"

参数 Λ β θ1 θ2 βW ? c μ ξ γ
取值 2 10-9 0.3 0.3 3.55×10-9 0.32 1.5 $\frac{1}{365}$ 0.1 0.5
参数 ρ $\hat{c}$ δ k T0 T1 a b D
取值 0.4 1.4 $\frac{1}{7}$ 103 13 -18 -0.12 5.1 0.1

图1

R0 < 1时, S(x, t)和I(x, t)的时间演化"

图2

R0>1时, S(x, t)和I(x, t)的时间演化"

图3

基本再生数R0关于参数的敏感性"

1 KIM K I , LIN Zhigui , ZHANG Lai . Avian-human influenza epidemic model with diffusion[J]. Nonlinear Analysis: Real World Applications, 2010, 11 (1): 313- 322.
doi: 10.1016/j.nonrwa.2008.11.015
2 IWAMI S , TAKEUCHI Y , LIU Xianning . Avian-human influenza epidemic model[J]. Mathematical Biosciences, 2007, 207 (1): 1- 25.
doi: 10.1016/j.mbs.2006.08.001
3 MORGAN I R , KELLY A P . Epidemiology of an avian influenza outbreak in Victoria in 1985[J]. Australian Veterinary Journal, 1990, 67 (4): 125- 128.
doi: 10.1111/j.1751-0813.1990.tb07727.x
4 SWAYNE D E . Pathobiology of H5N2 Mexican avian influenza virus infections of chickens[J]. Veterinary Pathology, 1997, 34 (6): 557- 567.
doi: 10.1177/030098589703400603
5 ZANELLA A , DALL'ARA P , MARTINO P A . Avian influenza epidemic in Italy due to serovar H7N1[J]. Avian Diseases, 2001, 45 (1): 257- 261.
doi: 10.2307/1593038
6 MA Xinling , WANG Wendi . A discrete model of avian influenza with seasonal reproduction and transmission[J]. Journal of Biological Dynamics, 2010, 4 (3): 296- 314.
doi: 10.1080/17513751003793009
7 VAIDYA N K , WANG Fengbin , ZOU Xingfu . Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment[J]. Discrete and Continuous Dynamical Systems: Series B, 2012, 17 (8): 2829- 2848.
doi: 10.3934/dcdsb.2012.17.2829
8 VAIDYA N K , WAHL L M . Avian influenza dynamics under periodic environmental conditions[J]. SIAM Journal on Applied Mathematics, 2015, 75 (2): 443- 467.
doi: 10.1137/140966642
9 ZHENG Tingting , NIE Linfei , ZHU Huaiping , et al. Role of seasonality and spatial heterogeneous in the transmission dynamics of avian influenza[J]. Nonlinear Analysis: Real World Applications, 2022, 67, 103567.
doi: 10.1016/j.nonrwa.2022.103567
10 GULBUDAK H , MARTCHEVA M . A structured avian influenza model with imperfect vaccination and vaccine-induced asymptomatic infection[J]. Bulletin of Mathematical Biology, 2014, 76 (10): 2389- 2425.
doi: 10.1007/s11538-014-0012-1
11 BROWN J D , SWAYNE D E , COOPER R J , et al. Persistence of H5 and H7 avian influenza viruses in water[J]. Avian Diseases, 2007, 51 (Suppl.1): 285- 289.
12 LU H , CASTRO A E , PENNICK K , et al. Survival of avian influenza virus H7N2 in SPF chickens and their environments[J]. Avian Diseases, 2003, 47 (Suppl.3): 1015- 1021.
13 HINSHAW V S , WEBSTER R G , TURNER B . Water-borne transmission of influenza A viruses?[J]. Intervirology, 1979, 11 (1): 66- 68.
doi: 10.1159/000149014
14 SMITH H L. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems[M]. Providence: American Mathematical Society, 1995.
15 MARTIN R H , SMITH H L . Abstract functional-differential equations and reaction-diffusion systems[J]. Transactions of the American Mathematical Society, 1990, 321 (1): 1- 44.
16 LOU Yijun , ZHAO Xiaoqiang . A reaction-diffusion malaria model with incubation period in the vector population[J]. Journal of Mathematical Biology, 2011, 62 (4): 543- 568.
doi: 10.1007/s00285-010-0346-8
17 WU Yixiang , ZOU Xingfu . Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates[J]. Journal of Differential Equations, 2018, 264 (8): 4989- 5024.
doi: 10.1016/j.jde.2017.12.027
18 MAGAL P , ZHAO Xiaoqiang . Global attractors and steady states for uniformly persistent dynamical systems[J]. SIAM Journal on Mathematical Analysis, 2005, 37 (1): 251- 275.
doi: 10.1137/S0036141003439173
19 JIANG Jifa , LIANG Xing , ZHAO Xiaoqiang . Saddle-point behavior for monotone semiflows and reaction-diffusion models[J]. Journal of Differential Equations, 2004, 203 (2): 313- 330.
doi: 10.1016/j.jde.2004.05.002
20 HESS P. Periodic-parabolic boundary value problems and positivity[M]//Pitman Search Notes in Mathematics Series, Vol. 247, Harlow: Longman Scientific Technical, 1991.
21 THIEME H R . Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[J]. SIAM Journal on Applied Mathematics, 2009, 70 (1): 188- 211.
doi: 10.1137/080732870
22 WANG Wendi , ZHAO Xiaoqiang . A nonlocal and time-delayed reaction-diffusion model of dengue transmission[J]. SIAM Journal on Applied Mathematics, 2011, 71 (1): 147- 168.
doi: 10.1137/090775890
23 WANG Wendi , ZHAO Xiaoqiang . Basic reproduction numbers for reaction-diffusion epidemic models[J]. SIAM Journal on Applied Dynamical Systems, 2012, 11 (4): 1652- 1673.
doi: 10.1137/120872942
24 THIEME H R . Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[J]. Journal of Mathematical Biology, 1992, 30 (7): 755- 763.
25 PROTTER M H , WEINBERGER H F . Maximum principles in differential equations[M]. New York: Springer-Verlag, 1984.
26 SMITH H L , ZHAO Xiaoqiang . Robust persistence for semi-dynamical systems[J]. Nonlinear Analysis: Theory, Methods and Applications, 2001, 47 (9): 6169- 6179.
doi: 10.1016/S0362-546X(01)00678-2
27 ALLEN L J S , BOLKER B M , LOU Yuan , et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model[J]. Discrete & Continuous Dynamical Systems, 2008, 21 (1): 1- 20.
28 WANG Fengbin , SHI Junping , ZOU Xingfu . Dynamics of a host-pathogen system on a bounded spatial domain[J]. Communications on Pure & Applied Analysis, 2015, 14 (6): 2535- 2560.
[1] 陈刚,张睿. 一类具有预防接种的两菌株共感模型的传染病动力学分析[J]. 《山东大学学报(理学版)》, 2023, 58(10): 84-96.
[2] 李永花,张存华. 具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(10): 122-126.
[3] 李晓伟,李桂花. 考虑环境病毒影响的COVID-19模型的动力学性态研究[J]. 《山东大学学报(理学版)》, 2023, 58(1): 10-15.
[4] 王艳梅,刘桂荣. 带Markov切换的随机SIQS模型的渐近行为[J]. 《山东大学学报(理学版)》, 2022, 57(6): 84-93.
[5] 王非,杨亚莉,金英姬,曹书苗. 具有两个感染阶段和治疗及非线性发生率的HIV/AIDS模型的研究[J]. 《山东大学学报(理学版)》, 2019, 54(10): 67-73.
[6] 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38.
[7] 张道祥,胡伟,陶龙,周文. 一类具有不同发生率的双疾病随机SIS传染病模型的动力学研究[J]. 山东大学学报(理学版), 2017, 52(5): 10-17.
[8] 董婵, 张菊平, 李有文. 两斑块间具有种群动力学的#br# 疟疾传播模型研究[J]. 山东大学学报(理学版), 2014, 49(06): 74-78.
[9] 杨俊仙,徐丽*. 一类具非线性发生率和时滞的SIQS传染病模型的全局稳定性[J]. 山东大学学报(理学版), 2014, 49(05): 67-74.
[10] 陈新一. 一类非自治捕食系统的动力学行为[J]. J4, 2013, 48(12): 18-23.
[11] . 一个具有BeddingtonDeAngelis功能反应项的捕食-食饵反应扩散模型的全局渐近稳定性[J]. J4, 2009, 44(6): 75-78.
[12] . 一类新的含有垂直传染与脉冲免疫的SIR传染病模型的定性分析[J]. J4, 2009, 44(5): 67-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[2] 刘婷婷,陈志勇,李晓琴*,杨文志. 随机变量序列的Berry-Esseen界[J]. 山东大学学报(理学版), 2014, 49(03): 101 -106 .
[3] 刘艳萍,吴群英. 优化权重下高斯序列最大值几乎处处中心极限定理[J]. 山东大学学报(理学版), 2014, 49(05): 50 -53 .
[4] 廖明哲. 哥德巴赫的两个猜想[J]. J4, 2013, 48(2): 1 -14 .
[5] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[6] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16 -23 .
[7] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[8] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .
[9] 张京友,张培爱,钟海萍. 进化图论在知识型企业组织结构设计中的应用[J]. J4, 2013, 48(1): 107 -110 .
[10] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .