您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (4): 117-126.doi: 10.6040/j.issn.1671-9352.0.2023.061

•   • 上一篇    下一篇

基于时间演化响应面模型的JWL状态方程参数标定方法

梁霄1(),王朔1,王瑞利2,陈江涛3   

  1. 1. 山东科技大学数学与系统科学学院, 山东 青岛 266590
    2. 北京应用物理与计算数学研究所, 北京 100094
    3. 中国空气动力研究与发展中心, 四川 绵阳 621000
  • 收稿日期:2023-02-14 出版日期:2024-04-20 发布日期:2024-04-12
  • 作者简介:梁霄(1984—),男,副教授,博士,研究方向为爆轰验证与确认. E-mail:mathlx@163.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2021BA056);国家数值风洞工程项目(NNW2019ZT7-A13);国家自然科学基金-中国工程物理研究院联合基金项目(U2230208);国家自然科学基金资助项目(12171047)

Parameters calibration method of JWL equation of state based on time varying response surface methodology

Xiao LIANG1(),Shuo WANG1,Ruili WANG2,Jiangtao CHEN3   

  1. 1. School of Mathematics and System Sciences, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
    2. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
    3. China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan, China
  • Received:2023-02-14 Online:2024-04-20 Published:2024-04-12

摘要:

综合试验数据和建模与模拟结果, 标定爆轰产物JWL(Jones-Wilkins-Lee)状态方程中的唯象参数, 对理解爆轰膨胀驱动过程和评价做功能力至关重要。时间演化代理模型能构建重要参数与系统响应量(system response quantity, SRQ)之间较为简洁的函数关系, 为描述爆轰动力行为和参数标定提供一种快速高精度算法。本文首先利用拉丁超立方抽样(Latin hypercube sampling, LHS)技术对爆轰产物JWL状态方程中的不确定参数进行抽样, 选取有效数据并分成两组: 第一组进行高分辨率仿真, 使用具有自主知识产权爆轰数值软件CFD2D计算得到径向壁位置和径向壁速度, 输出结果用于构建不确定JWL参数和SRQ之间的时间演化响应面模型; 第二组用于评估时间演化代理模型的精确度。其次, 定义代理模型与试验数据之间的残差, 进而搜索最小残差获得最优参数。结果表明: 将最优参数代入高分辨率模型后导出的SRQ的输出结果和试验数据吻合较好, 从而完成了参数标定和模型确认。结果为武器型号设计和装备性能评估提供依据。

关键词: 参数标定, 拉丁超立方抽样, 时间演化响应面模型法, 圆筒试验, JWL状态方程

Abstract:

Calibration of phenomenological parameters of Jones-Wilkins-Lee(JWL) equation of state based on experimental data and modeling and simulation result plays a vital role in comprehension of detonation-driven expansion process and evaluating the work performance of detonation product. Time varying response surface methodology (RSM) can establish a simpler functional relation between prominent parameters and system response quantity (SRQ). It provides a rapid and high-accurate computational method of describing the dynamical behavior and calibrating parameters. Firstly, Latin hypercube sampling (LHS) technique is used to sample the uncertainty in the uncertain parameters of JWL equation of state in the detonation production, and then effective data is selected and divided into two groups. High-resolution simulation is implemented based on group Ⅰ, and the radial position and radial velocity is obtained through full intellectual software—CFD2D. Time varying RSM between uncertain JWL parameters and SRQ is constructed through output of the high fidelity simulation. Group Ⅱ is used to evaluate the accuracy of the time varying RSM. Then Residual error between the simulation results of surrogate model and experiment data is constructed. Furthermore, the minimum residual error is searched among all the residual error and the corresponding parameters are obtained as the optimum parameters. The result shows that output of SRQ coincides with and experimental data perfectly, when these optimum parameters are substituted into the high fidelity computational methods. That means, the parameters are calibrated and model validated. The result will provide guidance for weapon design and munitions assessment.

Key words: parameters calibration, Latin hypercube sampling, time varying response surface methodology, cylinder test, JWL equation of state

中图分类号: 

  • O385

图1

圆筒试验计算模型"

图2

JOB9003炸药φ25.0 mm圆筒试验数据"

图3

JWL参数的采样数据"

图4

从样本组Ⅰ计算得到的系统响应量"

图5

响应面模型(1)的时变系数"

图6

代理模型结果与CFD2D模拟结果的比较"

图7

在10 000个样本(红点)中,7 331个有效样本的参数为R1、R2、ω"

图8

时间演化响应面模型的结果与圆筒试验数据之间的残差Erf"

图9

7 331个有效样本编号与残差的关系"

表1

不同系统响应量的时间演化响应面模型结果和圆筒试验数据之间的最小残差"

系统响应量 Erf R1 R2 ω
径向壁位置 3.36×10-5 5.164 77 1.622 09 0.405 80
径向壁速度 1.27×10-3 10.239 66 2.622 20 0.428 11

图10

最佳参数模拟结果与试验结果的比对"

1 王瑞利, 江松. 多物理耦合非线性偏微分方程与数值解不确定度量化数学方法[J]. 中国科学: 数学, 2015, 45 (6): 723- 738.
WANG Ruili , JIANG Song . Mathematical methods for uncertainty quantification of the nonlinear partial differential equation and numerical solution[J]. Scientia Sinica Mathematica, 2015, 45 (6): 723- 738.
2 梁霄, 王瑞利. 爆轰敏感性分析与验证CFD模型[J]. 物理学报, 2017, 109, 114- 121.
LIANG Xiao , WANG Ruili . Sensitivity analysis and validation of detonation CFD model[J]. Acta Physica Sinica, 2017, 109, 114- 121.
3 梁霄, 王瑞利. 基于自适应和投影Wiener混沌的圆筒试验不确定度量化[J]. 爆炸与冲击, 2019, 39 (4): 041408.
LIANG Xiao , WANG Ruili . Uncertainty quantification of cylindrical test through Wiener chaos with basis adaptation and projection[J]. Explosion and Shock Waves, 2019, 39 (4): 041408.
4 FICKETT W , DAVIS D . Detonation Theory and Experiment[M]. Boston: Dover Publications, 1979.
5 MADER C , FOREST C . Two dimensional homogeneous and heterogeneous detonation wave propagation[J]. Chemical Explosive, 1976, 21, 1- 17.
6 王艳莉, 张树道, 周海兵, 等. 基于不确定度量化分析的炸药驱动飞片参数标定和预测方法[J]. 数值计算与计算机应用, 2017, 38 (2): 143- 154.
WANG Yanli , ZHANG Shudao , ZHOU Haibing , et al. A uncertainty parameter calibration and prediction method with an application to flyer plate experiments[J]. Journal on Numerical Methods and Computer Applications, 2017, 38 (2): 143- 154.
7 王言金, 张树道, 李华, 等. 炸药爆轰产物Jones-Wilkins-Lee状态方程不确定参数[J]. 物理学报, 2016, 65 (10): 106401.
WANG Yanjin , ZHANG Shudao , LI Hua , et al. Uncertain parameters of Jones-Wilkin-Lee equation of state for detonation products of explosive[J]. Acta Physica Sinica, 2016, 65 (10): 106401.
8 MORTENSEN C , SOUERS P . Optimizing code calibration of the JWL explosive equation-of-state to the cylinder test[J]. Propellants Explosive Pyrotechnics, 2017, 42 (2): 616- 622.
9 ANDREWS S , FRASER A . Estimating physics models and quantifying their uncertainty using optimization with a Bayesian objective function[J]. ASME Journal of Verification, Validation, and Uncertainty Quantification, 2019, 4 (1): 011002.
10 GARNO J , OUELLET F , BAE S , et al. Calibration of reactive burn and Jones-Wilkins-Lee parameters for simulations of a detonation-driven low experiment with uncertainty quantification[J]. Physical Review Fluids, 2020, 5 (12): 123201.
11 LIANG Xiao , WANG Ruili , GHANEM R . Uncertainty quantification of detonation through adapted polynomial chaos[J]. International Journal for Uncertainty Quantification, 2020, 10 (1): 83- 100.
12 梁霄, 陈江涛, 王瑞利. 高维参数不确定爆轰的不确定度量化[J]. 兵工学报, 2020, 4 (4): 723- 734.
LIANG Xiao , CHEN Jiangtao , WANG Ruili . Uncertainty quantification of detonation with high-dimensional parameter uncertainty[J]. Acta Armamentarii, 2020, 4 (4): 723- 734.
13 OBERKAMPF W , ROY C . Verification and validation in scientific computing[M]. Boston: Cambridge University Press, 2010.
14 JIANG Xiong , HU Xingzhi , LIU Gang , et al. A generalized active subspace for dimension reduction in mixed aleatory-epistemic uncertainty quantification[J]. Computer Methods in Applied Mechanical Engineering, 2020, 370, 113240.
15 温丽晶, 段卓平, 张震宇, 等. 采用遗传算法确定炸药爆轰产物JWL状态方程参数[J]. 爆炸与冲击, 2013, 33 (1): 130- 134.
WEN Lijing , DUAN Zhuoping , ZHANG Zhenyu , et al. Determination of JWL-EOS parameters for explosive detonation products using genetic algorithm[J]. Explosion and Shock Waves, 2013, 33 (1): 130- 134.
16 TAGUCHI G . Introduction to quality engineering: white plains[M]. New York: Unipub Press, 1987.
17 BREIG S , LUTI K . Response surface methodology: a review on its applications and challenges in microbial cultures[J]. Material Today: Proceedings, 2021, 42 (5): 2277- 2284.
18 WANG Ruili , LIANG Xiao , LIN Zhong . LAD2D: a computer code for detonation fluid dynamics problems with large distortion and internal slip[J]. Detection and Diffusion Forum, 2017, 379 (3): 58- 63.
19 WANG Ruili , LIANG Xiao , LIU Xuezhe . Research on verification and validation strategy of detonation fluid dynamics code of LAD2D[J]. AIP Conference Proceedings, 2017, 1863 (1): 030007.
20 董海山, 周芬芬. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989.
DONG Haishan , ZHOU Fenfen . High explosive and its physical property[M]. Beijing: Science Press, 1989.
21 卢校军, 王蓉, 黄毅民, 等. 两种含铝炸药作功能力与JWL状态方程研究[J]. 含能材料, 2005, 13 (3): 144- 147.
LU Jiaojun , WANG Rong , HUANG Yimin , et al. Study on work ability and JWL equation of state of two aluminized explosives[J]. Chinese Journal of Energetic Materials, 2005, 13 (3): 144- 147.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 琦,赵秀恒,李国君 . 超图在树环中的嵌入问题[J]. J4, 2007, 42(10): 114 -117 .
[2] 刘建亚,展 涛 . 二次Waring-Goldbach问题[J]. J4, 2007, 42(2): 1 -18 .
[3] 于秀清. P-集合的(σ,τ)-扩展模型与其性质[J]. 山东大学学报(理学版), 2014, 49(04): 90 -94 .
[4] 田有功, 刘转玲. 任意支撑上5阶凸随机序的极值分布及其在保险精算中的应用[J]. 山东大学学报(理学版), 2014, 49(07): 57 -62 .
[5] 刘凌霞 . 一类平面映射在共振点附近的解析不变曲线的存在性[J]. J4, 2007, 42(2): 87 -91 .
[6] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[7] 张亚东1,李新祥2,石东洋3. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报(理学版), 2014, 49(05): 28 -35 .
[8] 陈亚娟1,2,尚新春1*. 受热黏弹性球体中空穴的动态生成和增长[J]. J4, 2013, 48(4): 72 -76 .
[9] 刘婷婷,陈志勇,李晓琴*,杨文志. 随机变量序列的Berry-Esseen界[J]. 山东大学学报(理学版), 2014, 49(03): 101 -106 .
[10] 李世龙,张云峰 . 一类基于算术均差商的有理三次插值样条的逼近性质[J]. J4, 2007, 42(10): 106 -110 .