您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (07): 57-62.doi: 10.6040/j.issn.1671-9352.0.2014.106

• 论文 • 上一篇    下一篇

任意支撑上5阶凸随机序的极值分布及其在保险精算中的应用

田有功, 刘转玲   

  1. 兰州商学院信息工程学院, 甘肃 兰州 730020
  • 收稿日期:2014-03-20 出版日期:2014-07-20 发布日期:2014-09-15
  • 作者简介:田有功(1977- ),男,博士研究生,讲师,研究方向为应用概率统计. E-mail:tyg200005@sina.com

Extremal distributions for 5-convex stochastic orderings with arbitrary discrete support and applications in actuarial sciences

TIAN You-gong, LIU Zhuan-ling   

  1. School of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, Gansu, China
  • Received:2014-03-20 Online:2014-07-20 Published:2014-09-15

摘要: 在离散的 5 阶凸随机序意义下,研究了在R+上的任意离散子集上取值的随机变量的极值分布。在保险精算应用中,估计了Lunberg调整系数的界。

关键词: Lunberg调整系数, s阶凸随机序, 任意支撑, 极值分布

Abstract: In the sense of discrete 5-convex stochastic ordering, the extremal distribution for random variables valued in an arbitrary discrete subset of the half-positive real line R+ was considered. The bounds of Lundberg's adjustment coefficient in actuarial sciences were estimated.

Key words: arbitrary support, extremal distribution, s-convex stochastic orderings, Lundberg's adjustment coefficient

中图分类号: 

  • O211.6
[1] KAAS R, VAN HEERWAARDEN A E, GOOVAERTS M. Ordering of actuarial risks[M]. Brussels: CAIRE, 1994.
[2] SHAKED M, SHANTHIKUMAR J G. Stochastic orders and their applications[M]. New York: Springer, 2006.
[3] DENUIT M, DHAENE J, GOOVAERTS M, et al. Actuarial theory for dependent risks: measures, orders and models[M]. New York: Wiley, 2005.
[4] FISHBURN P C, LAVALLE I H. Stochastic dominance on unidimensional grids[J]. Mathematics of Operations Research,1995, 20(3):513-525.
[5] DENUIT M, LEFVRE C L. Some new classes of stochastic order relations among arithmetic random variables with applications in actuarial sciences[J]. Insurance: Mathematics and Economics, 1997, 20(3):197-214.
[6] DENUIT M, LEFVRE C L, MESFIOUI M. On s-convex stochastic extrema for arithmetic risks[J]. Insurance: Mathematics and Economics, 1999, 25(2):143-155.
[7] COURTOIS C, DENUIT M, BELLEGEM S V. Discrete s-convex extremal distributions: Theory and applications[J]. Applied Mathematics Letters, 2006, 19(12):1367-1377.
[8] 田有功,焦桂梅.离散的5阶凸随机序的极值分布及其应用[J].山东大学学报:理学版, 2014, 49(1):99-104.
[9] DENUIT M, LEFVRE C L, UTEV S. Stochastic orderings of convex/concave type on an arbitrary grid[J]. Mathematics of Operations Research, 1999, 24(4):835-846.
[10] COURTOIS C, DENUIT M. S-convex extremal distributions with arbitrary discrete support[J]. Journal of Mathematical Inequalities, 2008, 2(2):197-214.
[11] DENUIT M, LEFVRE C L, SHAKED M. The s-convex orders among real random variables with applications[J]. Mathematical Inequalities and Applications, 1998, 1(4):585-613.
[12] SHIU E S W. The probability of eventual ruin in the compound binomial model[J]. Astin Bulletin, 1989, 19(2):179-190.
[13] WILLMOT G E. Ruin probabilities in the compound binomial model[J]. Insurance: Mathematics and Economics, 1993, 12(2):133-142.
[14] WALHIN J F, PARIS J. On the use of equispaced discrete distributions[J]. Astin Bulletin, 1998, 28(2):241-255.
[1] 田有功1,焦桂梅2*. 离散的 5 阶凸随机序的极值分布及其应用[J]. 山东大学学报(理学版), 2014, 49(1): 99-104.
[2] 王芳 郭华平 牛常勇 范明. 一种基于EVS相似度的邮件社区聚类方法[J]. J4, 2010, 45(3): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!