您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (07): 63-68.doi: 10.6040/j.issn.1671-9352.0.2014.041

• 论文 • 上一篇    下一篇

一般鞅驱动的倒向随机Volterra积分方程

赵洁1,3, 石玉峰2,3   

  1. 1. 中国人民银行菏泽市中心支行, 山东 菏泽 274000;
    2. 山东大学金融研究院, 山东 济南 250100;
    3. 山东大学数学学院, 山东 济南 250100
  • 收稿日期:2014-02-03 出版日期:2014-07-20 发布日期:2014-09-15
  • 通讯作者: 石玉峰(1970- ),男,教授,博士,主要研究方向为随机分析、金融数学、随机控制、风险管理. E-mail:yfshi@sdu.edu.cn E-mail:yfshi@sdu.edu.cn
  • 作者简介:赵洁(1986- ),女,硕士,主要研究方向为金融数学. E-mail:zhao.jie1227@163.com
  • 基金资助:
    国家自然科学基金资助项目(11371226,11071145,11231005);国家自然科学基金委创新研究群体基金资助项目(11221061);“111计划”资助项目(B12023)

Backward stochastic Volterra integral equations with general martingales

ZHAO Jie1,3, SHI Yu-feng2,3   

  1. 1. The People's Bank of China Heze Central Subbranch, Heze 274000, Shandong, China;
    2. Institute for Financial Studies, Shandong University, Jinan 250100, Shandong, China;
    3. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Received:2014-02-03 Online:2014-07-20 Published:2014-09-15

摘要: 证明了一般鞅驱动的倒向随机Volterra积分方程在Lipschitz假设条件下适应的M-解的存在唯一性,讨论了一般鞅驱动的线性倒向随机Volterra积分方程对应的对偶原理,并利用对偶原理证明了这类方程的比较定理。

关键词: 适应M-解, 对偶原理, 倒向随机Volterra积分方程

Abstract: The existence and uniqueness result of the adapted M-solution of backward stochastic Volterra integral equations (BSVIEs) driven by general martingales under Lipschitz conditions was proved, and the duality principles of the linear BSVIEs driven by general martingales were given. At last a comparison theorem of this kind of BSVIEs was showed by virtue of the duality principles.

Key words: adapted M-solution, Backward stochastic Volterra integral equation, duality principle

中图分类号: 

  • O211.6
[1] PARDOUX E, PENG Shige. Adapted solution of a backward stochastic equation[J]. Systems & Control Letters, 1990, 14(1):55-61.
[2] EL KAROUI N, HUANG S. A general result of existence and uniqueness of backward stochastic differential equations[C]// Pitman Research Notes in Mathematics Series. Harlow: Longman Higher Education, 1997, 364(1):27-36.
[3] 李娟. 由一般鞅驱动的倒向随机微分方程[J]. 山东大学学报:理学版,2005,40(4):70-76.
LI Juan. Backward stochastic differential equations with general martingale[J]. Journal of Shandong University:Natural Science, 2005, 40(4):70-76.
[4] YONG Jiongmin. Backward stochastic Volterra integral equations and some related problems[J]. Stochastic Processes and their Applications, 2006, 116(5):779-795.
[5] YONG Jiongmin. Well-posedness and regularity of backward stochastic Volterra integral equation[J]. Probability Theory & Related Fields, 2008, 142(1-2):1-77.
[6] SHI Yufeng, WANG Tianxiao. Solvability of general backward stochastic Volterra integral equations with non-Lipschitz conditions[J]. J Korean Math Soc, 2012, 49(6):1301-1321.
[7] YONG Jiongmin. A deterministic linear quadratic time-inconsistent optimal control problem[J]. Mathematical Control & Related Fields, 2011, 1:83-118.
[8] YONG Jiongmin. Time-inconsistent optimal control problem and the equilibrium HJB equation[J]. Mathematical Control & Related Fields, 2012, 2:271-329.
[9] WANG Tianxiao, SHI Yufeng. A class of time inconsistent risk measures and backward stochastic Volterra integral equations[J]. Risk and Decision Analysis, 2013, 4:17-24.
[10] DUFFIE D, EPSTEIN L. Stochastic differential utility[J]. Econometrica, 1992, 60:353-394.
[11] 严加安. 鞅与随机积分引论[M]. 上海:上海科学技术出版社,1981:212-214.
[1] 熊德国,胡勇文. 用最小费用流的允许边算法求解指派问题[J]. J4, 2012, 47(3): 103-109.
[2] 王天啸. 局部Lipschitz条件下的倒向随机Volterra积分方程[J]. J4, 2011, 46(7): 112-115.
[3] 熊德国1, 胡勇文1, 施建明2. 用对偶原理求解最小费用流的一种新算法[J]. J4, 2011, 46(6): 99-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!