山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (07): 63-68.doi: 10.6040/j.issn.1671-9352.0.2014.041
赵洁1,3, 石玉峰2,3
ZHAO Jie1,3, SHI Yu-feng2,3
摘要: 证明了一般鞅驱动的倒向随机Volterra积分方程在Lipschitz假设条件下适应的M-解的存在唯一性,讨论了一般鞅驱动的线性倒向随机Volterra积分方程对应的对偶原理,并利用对偶原理证明了这类方程的比较定理。
中图分类号:
[1] PARDOUX E, PENG Shige. Adapted solution of a backward stochastic equation[J]. Systems & Control Letters, 1990, 14(1):55-61. [2] EL KAROUI N, HUANG S. A general result of existence and uniqueness of backward stochastic differential equations[C]// Pitman Research Notes in Mathematics Series. Harlow: Longman Higher Education, 1997, 364(1):27-36. [3] 李娟. 由一般鞅驱动的倒向随机微分方程[J]. 山东大学学报:理学版,2005,40(4):70-76. LI Juan. Backward stochastic differential equations with general martingale[J]. Journal of Shandong University:Natural Science, 2005, 40(4):70-76. [4] YONG Jiongmin. Backward stochastic Volterra integral equations and some related problems[J]. Stochastic Processes and their Applications, 2006, 116(5):779-795. [5] YONG Jiongmin. Well-posedness and regularity of backward stochastic Volterra integral equation[J]. Probability Theory & Related Fields, 2008, 142(1-2):1-77. [6] SHI Yufeng, WANG Tianxiao. Solvability of general backward stochastic Volterra integral equations with non-Lipschitz conditions[J]. J Korean Math Soc, 2012, 49(6):1301-1321. [7] YONG Jiongmin. A deterministic linear quadratic time-inconsistent optimal control problem[J]. Mathematical Control & Related Fields, 2011, 1:83-118. [8] YONG Jiongmin. Time-inconsistent optimal control problem and the equilibrium HJB equation[J]. Mathematical Control & Related Fields, 2012, 2:271-329. [9] WANG Tianxiao, SHI Yufeng. A class of time inconsistent risk measures and backward stochastic Volterra integral equations[J]. Risk and Decision Analysis, 2013, 4:17-24. [10] DUFFIE D, EPSTEIN L. Stochastic differential utility[J]. Econometrica, 1992, 60:353-394. [11] 严加安. 鞅与随机积分引论[M]. 上海:上海科学技术出版社,1981:212-214. |
[1] | 熊德国,胡勇文. 用最小费用流的允许边算法求解指派问题[J]. J4, 2012, 47(3): 103-109. |
[2] | 王天啸. 局部Lipschitz条件下的倒向随机Volterra积分方程[J]. J4, 2011, 46(7): 112-115. |
[3] | 熊德国1, 胡勇文1, 施建明2. 用对偶原理求解最小费用流的一种新算法[J]. J4, 2011, 46(6): 99-102. |
|