您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (8): 20-27.doi: 10.6040/j.issn.1671-9352.0.2023.331

•   • 上一篇    下一篇

高维乘积空间上反向分数次Hardy不等式的最佳常数

刘小玉(),魏明权*(),宋鹏超   

  1. 信阳师范大学数学与统计学院, 河南 信阳 464000
  • 收稿日期:2023-07-25 出版日期:2024-08-20 发布日期:2024-07-31
  • 通讯作者: 魏明权 E-mail:liuxy465@163.com;weimingquan11@mails.ucas.ac.cn
  • 作者简介:刘小玉(2000—), 女, 硕士研究生, 研究方向为调和分析及其应用. E-mail: liuxy465@163.com
  • 基金资助:
    信阳师范大学2024年研究生科研创新基金资金项目(2024KYJJ057);信阳师范大学“南湖学者奖励计划”青年项目

Sharp constant for reverse fractional Hardy inequality on higher-dimensional product spaces

Xiaoyu LIU(),Mingquan WEI*(),Pengchao SONG   

  1. School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, Henan, China
  • Received:2023-07-25 Online:2024-08-20 Published:2024-07-31
  • Contact: Mingquan WEI E-mail:liuxy465@163.com;weimingquan11@mails.ucas.ac.cn

摘要:

研究了高维乘积空间上反向分数次Hardy不等式在加幂权Lebesgue空间中成立的条件, 并给出了该不等式的最佳常数。

关键词: 分数次Hardy算子, 旋转方法, 反向Hölder不等式, 反向Minkowski不等式, 最佳常数

Abstract:

The conditions for the validity of the reverse fractional Hardy inequality in power-weighted Lebesgue spaces are studied, and the sharp constant for the inequality is given.

Key words: fractional Hardy operator, rotation method, reverse Hölder's inequality, reverse Minkowski's inequality, sharp constant

中图分类号: 

  • O174.2
1 HARDY G H .Note on a theorem of Hilbert[J].Mathematische Zeitschrift,1920,6(3/4):314-317.
2 FARIS W G .Weak Lebesgue spaces and quantum mechanical binding[J].Duke Mathematical Journal,1976,43(2):365-373.
3 CHRIST M , GRAFAKOS L .Best constants for two nonconvolution inequalities[J].Proceedings of the American Mathematical Society,1995,123(6):1687-1693.
doi: 10.1090/S0002-9939-1995-1239796-6
4 LU Shanzhen , YAN Dunyan , ZHAO Fayou .Sharp bounds for Hardy type operators on higher-dimensional product spaces[J].Journal of Inequalities and Applications,2013,2013(1):1-11.
doi: 10.1186/1029-242X-2013-1
5 ZHAO Fayou , LU Shanzhen .The best bound for n-dimensional fractional Hardy operators[J].Mathematical Inequalities & Applications,2015,18(1):233-240.
6 WANG Shimo , LU Shanzhen , YAN Dunyan .Explicit constants for Hardy's inequality with power weight on n-dimensional product spaces[J].Science China Mathematics,2012,55(12):2469-2480.
doi: 10.1007/s11425-012-4453-4
7 HE Qianjun , LI Xiang , YAN Dunyan .Sharp bounds for Hardy type operators on higher-dimensional product spaces[J].Frontiers of Mathematics in China,2018,13(6):1341-1353.
doi: 10.1007/s11464-018-0740-x
8 HUANG Zhenxiao , SHI Yanping , YANG Bicheng .On a reverse extended Hardy-Hilbert's inequality[J].Journal of Inequalities and Applications,2020,2020(68):1-14.
9 LIAO Jianquan , YANG Bicheng .A new reverse extended Hardy-Hilbert's inequality with two partial sums and parameters[J].Axioms,2023,12(7):1-13.
10 FAN Dashan , ZHAO Fayou .Sharp constants for multivariate Hausdorff q-inequalities[J].Journal of the Australian Mathematical Society,2019,106(2):274-286.
doi: 10.1017/S1446788718000113
11 HARDY G H , LITTLEWOOD J E , PÓLYA G .Inequalities[M].Cambridge: Cambridge University Press,1952.
12 FU Z W , GRAFAKOS L , LU S Z , et al.Sharp bounds for m-linear Hardy and Hilbert operators[J].Houston Journal of Mathematics,2012,38(1):225-244.
[1] 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110.
[2] 黄臻晓. 一个逆向Hilbert型积分不等式的最佳推广[J]. J4, 2010, 45(2): 107-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[2] 袁瑞强,刘贯群,张贤良,高会旺 . 黄河三角洲浅层地下水中氢氧同位素的特征[J]. J4, 2006, 41(5): 138 -143 .
[3] 郭文鹃,杨公平*,董晋利. 指纹图像分割方法综述[J]. J4, 2010, 45(7): 94 -101 .
[4] 张雯,张化祥*,李明方,计华. 决策树构建方法:向前两步优于一步[J]. J4, 2010, 45(7): 114 -118 .
[5] 宋 颖,张兴芳,王庆平 . 参数Kleene系统的α-反向三Ⅰ支持算法[J]. J4, 2007, 42(7): 45 -48 .
[6] 张京友,张培爱,钟海萍. 进化图论在知识型企业组织结构设计中的应用[J]. J4, 2013, 48(1): 107 -110 .
[7] 肖 华 . 多维反射倒向随机微分方程的解对参数的连续依赖性[J]. J4, 2007, 42(2): 68 -71 .
[8] 郭乔进,丁轶,李宁. 一种基于上下文信息的乳腺肿块ROI检测方法[J]. J4, 2010, 45(7): 70 -75 .
[9] 付海艳,卢昌荆,史开泉 . (F,F-)-规律推理与规律挖掘[J]. J4, 2007, 42(7): 54 -57 .
[10] 刘战杰1,马儒宁1,邹国平1,钟宝江2,丁军娣3. 一种新的基于区域生长的彩色图像分割算法[J]. J4, 2010, 45(7): 76 -80 .