您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (8): 103-112.doi: 10.6040/j.issn.1671-9352.0.2023.007

•   • 上一篇    下一篇

弱测量下噪声环境的多粒子短距离隐形传态

刘淼1,2(),彭家寅1,2,3,*(),汤建钢1,2   

  1. 1. 伊犁师范大学数学与统计学院, 新疆 伊宁 835000
    2. 伊犁师范大学应用数学研究所, 新疆 伊宁 835000
    3. 内江师范学院数学与信息科学学院, 四川 内江 641100
  • 收稿日期:2023-01-05 出版日期:2024-08-20 发布日期:2024-07-31
  • 通讯作者: 彭家寅 E-mail:lium76@163.com;pengjiayin62226@163.com
  • 作者简介:刘淼(1976—),男,教授,硕士,研究方向为统计与随机理论. E-mail: lium76@163.com
  • 基金资助:
    新疆维吾尔自治区自然科学基金项目(2021D01C462);伊犁师范大学提升学科综合实力专项项目(22XKZZ18);伊犁哈萨克州科技计划项目(YZ2022B036);伊犁师范大学科研创新团队计划项目(CXZK2021015)

Multi-particle short-distance teleportation in noisy environment with weak measurement

Miao LIU1,2(),Jiayin PENG1,2,3,*(),Jiangang TANG1,2   

  1. 1. School of Mathematics and Statistics, Yili Normal University, Yining 835000, Xinjiang, China
    2. Institute of Applied Mathematics, Yili Normal University, Yining 835000, Xinjiang, China
    3. School of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, Sichuan, China
  • Received:2023-01-05 Online:2024-08-20 Published:2024-07-31
  • Contact: Jiayin PENG E-mail:lium76@163.com;pengjiayin62226@163.com

摘要:

首先利用一个三粒子最大纠缠态和一个处于基态|0?的辅助粒子作为量子信道, 提出传输一个未知三粒子GHZ(Greenberger-Horne-Zeilinger)态的确定性新方案, 在该方案中, 发送者和接收者同时分享辅助粒子, 双方都需要对这个分享的辅助粒子执行量子门操作。结果表明: 该方案节省了量子纠缠资源, 缩短隐形传态距离, 而且可以被推广成多粒子GHZ态的隐形传态; 进一步以振幅阻尼信道为例, 讨论量子噪声对该方案的影响, 获得了隐形传态的保真度, 并分析弱测量及其反转测量对噪声方案的影响, 发现对于具体的GHZ态而言, 弱测量及其反转测量会抑制或恶化噪声对其隐形传态保真度的衰退。

关键词: 短距离隐形传态, GHZ态, 振幅阻尼, 弱测量

Abstract:

Using a three-particle maximally entangled state and an auxiliary particle in the ground state |0? as the quantum channel, a new deterministic scheme for transmitting an unknown three-particle GHZ (Greenberger-Horne-Zeilinger) state is proposing. In this scheme, the sender and the receiver share the auxiliary particle at the same time, and both parties need to perform quantum gate operation on the shared auxiliary particle. The results show that the scheme saves quantum entanglement resources but shortens the teleportation distance, and can be extended to the teleportation of multi-particle GHZ state. Furthermore, taking the amplitude damping channel as an example, the influence of quantum noise on the scheme is discussed, and the fidelity of teleportation is obtained. The influence of weak measurement and its reversal measurement on the noise scheme is analyzed. It is found that for a specific GHZ state, the weak measurement and its reversal measurement will suppress or deteriorate the degradation of the fidelity of its teleportation caused by noise.

Key words: short-distance teleportation, GHZ state, amplitude damping, weak measurement

中图分类号: 

  • O431.2

表1

Alice的测量结果、塌陷态和Bob的恢复酉变换之间的关系"

测量结果 塌陷态 恢复酉变换
|0001?或者|1101? α|000?+β|111? σ0σ0σ0
|0101?或者|1001? α|000?-β|111? σ0σ0σz
|0011?或者|1111? α|001?+β|110? σ0σ0σx
|0111?或者|1011? α|001?-β|110? σ0σ0⊗iσy
|0000?或者|1100? α|001?+β|001? σxσxσ0
|0100?或者|1000? α|001?-β|001? σxσxσz
|0010?或者|1110? α|111?+β|000? σxσxσx
|0110?或者|1010? α|111?+β|000? σxσx⊗iσy

图1

基于AD信道的短距离隐形传态的保真度"

图2

有无弱测量的短距离隐形传态保真度的比较"

图3

有与无弱测量的短距离隐形传态保真度的三维比较"

图4

弱测量与反转测量下的短距离隐形传态总的成功概率"

1 BENNETT C H , BRASSARD G , CRÉPEAU C , et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70 (13): 1895- 1899.
doi: 10.1103/PhysRevLett.70.1895
2 RIEBE M , HÄFFNER H , ROOS C F , et al. Deterministic quantum teleportation with atoms[J]. Nature, 2004, 429, 734- 737.
doi: 10.1038/nature02570
3 PENG J Y , MO Z W . Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels[J]. Chinese Physics B, 2013, 22 (5): 050310.
doi: 10.1088/1674-1056/22/5/050310
4 KARLSSON A , BOURENNANE M . Quantum teleportation using three-particle entanglement[J]. Physical Review A, 1998, 58 (6): 4394- 4400.
doi: 10.1103/PhysRevA.58.4394
5 KIM Y H , KULIK S P , SHIH Y . Quantum teleportation of a polarization state with a complete Bell state measurement[J]. Physical Review Letters, 2001, 86 (7): 1370- 1373.
doi: 10.1103/PhysRevLett.86.1370
6 SONG T Q . Teleportation of quantum states with continuous variables[J]. Physical Letters A, 2003, 316 (6): 363- 368.
doi: 10.1016/j.physleta.2003.07.007
7 XIANG S H . Probabilistic teleportation scheme of two-mode entangled photon states by using linear optic element[J]. Chinese Journal of Atomic and Molecular Physics, 2003, 20 (3): 425- 428.
8 CAO Z L , SONG W . Teleportation of a two-particle entangled state via W class states[J]. Physica A: Statistical Mechanics and Its Applications, 2005, 347, 177- 183.
doi: 10.1016/j.physa.2004.08.033
9 WANG X W . Teleportation of an arbitrary two-particle state via a single cluster-class state[J]. Communications in Theoretical Physics, 2009, 52 (2): 209- 213.
doi: 10.1088/0253-6102/52/2/04
10 ZHAN Y B , ZHANG Q Y , WANG Y W , et al. Schemes for teleportation of an unknown single-qubit quantum state by using an arbitrary high-dimensional entangled state[J]. Chinese Physics Letters, 2010, 27 (1): 010307.
doi: 10.1088/0256-307X/27/1/010307
11 MA X S , HERBST T , SCHEIDL T , et al. Quantum teleportation over 143 kilometres using active feed-forward[J]. Nature, 2012, 489, 269- 273.
doi: 10.1038/nature11472
12 BOUWMEESTER D , PAN J W , MATTLE K , et al. Experimental quantum teleportation[J]. Nature, 1997, 390, 575- 579.
doi: 10.1038/37539
13 JIN X M , REN J G , YANG B , et al. Experimental free-space quantum teleportation[J]. Nature Photonics, 2010, 4 (6): 376- 381.
doi: 10.1038/nphoton.2010.87
14 LIU J C , LI Y H , NIE Y Y . Controlled teleportation of an arbitrary two-particle pure or mixed state by using a five-qubit cluster state[J]. International Journal of Theoretical Physics, 2010, 49 (8): 1976- 1984.
doi: 10.1007/s10773-010-0383-5
15 LI H X , DENG F G , ZHOU H Y . Controlled teleportation of an arbitrary multi-qudit state in a general form with 3-dimensional Greenberger-Horne-Zeilinger states[J]. Chinese Physics Letters, 2007, 24 (5): 1151- 1153.
doi: 10.1088/0256-307X/24/5/007
16 JEONG K , KIM J , LEE S . Minimal control power of the controlled teleportation[J]. Physical Review A, 2016, 93 (3): 032328.
doi: 10.1103/PhysRevA.93.032328
17 MAN Z X , XIA Y J , AN N B . Genuine multiqubit entanglement and controlled teleportation[J]. Physical Review A, 2007, 75 (5): 052306.
doi: 10.1103/PhysRevA.75.052306
18 ZHU F C , DU J Z , CHEN X B , WEN Q Y . Probabilistic teleportation of multi-particle partially entangled state[J]. Chinese Physics B, 2008, 17 (3): 771- 777.
doi: 10.1088/1674-1056/17/3/006
19 PENG J Y , LUO M X , MO Z W . Quantum tasks with non-maximally quantum channels via positive operator-valued measurement[J]. International Journal of Theoretical Physics, 2013, 52 (1): 253- 265.
doi: 10.1007/s10773-012-1328-y
20 YAN F , YAN T . Probabilistic teleportation via a non-maximally entangled GHZ state[J]. Chinese Science Bulletin, 2010, 55 (10): 902- 906.
doi: 10.1007/s11434-009-0725-y
21 PENG J Y , MO Z W . Hierarchical and probabilistic quantum state sharing with a nonmaxilly four-qubit cluster state[J]. International Journal of Quantum Information, 2013, 11 (1): 1350004.
doi: 10.1142/S0219749913500044
22 WANG T J , ZHOU H Y , DENG F G . Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements[J]. Physica A Statistical Mechanics & Its Applications, 2008, 387 (18): 4716- 4722.
23 PENG J Y , BAI M Q , MO Z W . Hierarchical and probabilistic quantum state sharing via a non-maximally entangled |χ⟩ state[J]. Chinese Physics B, 2014, 23 (1): 010304.
doi: 10.1088/1674-1056/23/1/010304
24 SHI R H , HUANG L S , WEI Y , et al. Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state[J]. Quantum Information Processing, 2011, 10 (1): 53- 61.
doi: 10.1007/s11128-010-0176-z
25 ZHA X W , ZOU Z C , QI J X , et al. Bidirectional quantum controlled teleportation via five-qubit cluster state[J]. International Journal of Theoretical Physics, 2013, 52 (6): 1740- 1744.
doi: 10.1007/s10773-012-1208-5
26 PENG J Y , BAI M Q , MO Z W . Bidirectional quantum states sharing[J]. International Journal of Theoretical Physics, 2016, 55 (5): 2481- 2489.
doi: 10.1007/s10773-015-2885-7
27 YANG G , LIAN B W , NIE M , et al. Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement[J]. Chinese Physics B, 2017, 26 (4): 040305.
doi: 10.1088/1674-1056/26/4/040305
28 CHEN Y X , DU J , LIU S Y , et al. Cyclic quantum teleportation[J]. Quantum Information Processing, 2017, 16 (8): 201.
doi: 10.1007/s11128-017-1648-1
29 PENG J Y , HE Y . Annular controlled teleportation[J]. International Journal of Theoretical Physics, 2019, 58 (10): 3271- 3281.
doi: 10.1007/s10773-019-04202-8
30 WU F , BAI M Q , ZHANG Y C , et al. Cyclic quantum teleportation of an unknown multi-particle high-dimension state[J]. Modern Physics Letters B, 2020, 34 (5): 2050073.
doi: 10.1142/S0217984920500736
31 PENG J Y, TANG L, YANG Z, et al. Cyclic teleportation in noisy channel with nondemolition parity analysis and weak measurement[J]. Quantum Information Processing, 2022, 21: 21(3): 1-17.
32 ZHAN H T , YU X T , XIONG P Y , et al. Multi-hop teleportation based on W state and EPR pairs[J]. Chinese Physics B, 2016, 25 (5): 050305.
doi: 10.1088/1674-1056/25/5/050305
33 PENG J Y , BAI M Q , MO Z W . Deterministic multi-hop controlled teleportation of arbitrary single-qubit state[J]. International Journal of Theoretical Physics, 2017, 56, 3348- 3358.
doi: 10.1007/s10773-017-3504-6
34 TAN X D , HAN J Q . Short-distance teleportation of an arbitrary two-qubit state via Bell state[J]. International Journal of Theoretical Physics, 2021, 60 (4): 1275- 1282.
doi: 10.1007/s10773-021-04753-9
35 DAI H Y , CHEN P X , LI C Z . Teleportation of an arbitrary two-particle state by two partial entangled three-particle GHZ states[J]. Communications in Theoretical Physics, 2005, 43 (5): 799- 802.
doi: 10.1088/0253-6102/43/5/007
36 SUN L L , FAN Q B , ZHANG S . Probabilistic teleportation of an arbitrary two-particle state by a partial three-particle entangled GHZ state and a two-particle entangled state[J]. Chinese Physics, 2005, 14 (7): 1313- 1316.
doi: 10.1088/1009-1963/14/7/008
37 LI H, LI C W. Deterministic teleportation of an arbitrary two-qubit state via a six-qubit cluster state[C]//Proceedings of the 31st Chinese Control Conference. Hefei: IEEE, 2012: 7172-7176.
38 LI H , LI C , WU R . Deterministic teleportation of an arbitrary two-qubit state via a one-dimensional four-qubit cluster state[J]. Tsinghua Science & Technology, 2012, 17 (3): 313- 318.
doi: 10.3969/j.issn.1007-0214.2012.03.012
39 XIONG S Y , TANG L , ZHANG Q , et al. The rotation scheme of quantum states based on EPR pairs[J]. Modern Physics Letters B, 2022, 36 (5): 2150579.
doi: 10.1142/S0217984921505795
40 SCHOELKOPF R J , GIRVIN S M . Wiring up quantum systems[J]. Nature, 2008, 451, 664- 669.
doi: 10.1038/451664a
41 STEFFEN L , SALATHE Y , OPPLIGER M , et al. Deterministic quantum teleportation with feed-forward in a solid state system[J]. Nature, 2013, 500, 319- 322.
doi: 10.1038/nature12422
42 METCALF B J . Quantum teleportation on a photonic chip[J]. Nature Photonics, 2014, 8 (10): 770- 774.
doi: 10.1038/nphoton.2014.217
43 PIRANDOLA S , EISERT J , WEEDBROOK C , et al. Advances in quantum teleportation[J]. Nature Photonics, 2015, 9 (10): 641- 652.
doi: 10.1038/nphoton.2015.154
44 OH S , LEE S , LEE H W . Fidelity of quantum teleportation through noisy channels[J]. Physical Review A, 2002, 66 (2): 022316.
doi: 10.1103/PhysRevA.66.022316
45 ESPOUKEH P , PEDRAM P . Quantum teleportation through noisy channels with multi-qubit GHZ states[J]. Quantum Information Processing, 2014, 13 (8): 1789- 1811.
doi: 10.1007/s11128-014-0766-2
46 BENNETT C H , BRASSARD G , POPESCU S , et al. Purification of noisy entanglement and faithful teleportation via noisy channels[J]. Physical Review Letters, 1996, 76 (5): 722- 725.
doi: 10.1103/PhysRevLett.76.722
47 BADZIAG P , HORODECKI M , HORODECKI P , et al. Local environment can enhance fidelity of quantum teleportation[J]. Physical Review A, 2000, 62, 012311.
doi: 10.1103/PhysRevA.62.012311
48 BANDYOPADHYAY S . Origin of noisy states whose teleportation fidelity can be enhanced through dissipation[J]. Physical Review A, 2002, 65 (2): 022302.
doi: 10.1103/PhysRevA.65.022302
49 YANG G , LIAN B W , NIE M , et al. Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement[J]. Chinese Physics B, 2017, 26 (4): 040305.
doi: 10.1088/1674-1056/26/4/040305
50 PENG J Y , XIANG Y . Bidirectional remote state preparation in noisy environment assisted by weak measurement[J]. Optics Communications, 2021, 499, 127285.
doi: 10.1016/j.optcom.2021.127285
51 NIELSEN M A , CHUANG I L . Quantum computation and quantum information[M]. Cambridge: Cambridge University Press, 2000.
[1] 任春年,高剑. 基于量子行走的局域与离域化控制及实验方案[J]. 山东大学学报(理学版), 2016, 51(5): 61-66.
[2] 彭家寅. n-粒子赤道态的受控远程制备[J]. 《山东大学学报(理学版)》, 2020, 55(7): 46-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟祥波1,张立东1,杜子平2. 均值-方差标准下带跳的保险公司投资与再保险策略[J]. 山东大学学报(理学版), 2014, 49(05): 36 -40 .
[2] 彭振华,徐义红*,涂相求. 近似拟不变凸集值优化问题弱有效元的最优性条件[J]. 山东大学学报(理学版), 2014, 49(05): 41 -44 .
[3] 袁晖坪 . 行(列)对称矩阵的Schur分解和正规阵分解[J]. J4, 2007, 42(10): 123 -126 .
[4] 邹国平1,马儒宁1,丁军娣2,钟宝江3. 基于显著性加权颜色和纹理的图像检索[J]. J4, 2010, 45(7): 81 -85 .
[5] 陈 莉 . 不确定奇异系统的鲁棒故障诊断滤波器设计[J]. J4, 2007, 42(7): 62 -65 .
[6] 伍芸1,2, 韩亚蝶1. 一类临界位势非线性椭圆型方程非平凡解的存在性[J]. J4, 2013, 48(4): 91 -94 .
[7] 樊剑武 赵晓华 田乃硕 贠小青. 带有负顾客的M/M/1/N单重工作休假排队系统[J]. J4, 2009, 44(8): 68 -73 .
[8] 李 健,徐晓静 . θ-粗模糊集[J]. J4, 2006, 41(2): 24 -27 .
[9] 郭兰兰1,2,耿介1,石硕1,3,苑飞1,雷丽1,杜广生1*. 基于UDF方法的阀门变速关闭过程中的#br# 水击压强计算研究[J]. 山东大学学报(理学版), 2014, 49(03): 27 -30 .
[10] 史开泉. 信息规律智能融合与软信息图像智能生成[J]. 山东大学学报(理学版), 2014, 49(04): 1 -17 .