您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (9): 108-118.doi: 10.6040/j.issn.1671-9352.0.2023.334

•   • 上一篇    下一篇

基于在线评论的线上教学平台选择方法

梁霞(),郭洁*()   

  1. 山东财经大学管理科学与工程学院, 山东 济南 250014
  • 收稿日期:2023-07-28 出版日期:2024-09-20 发布日期:2024-10-10
  • 通讯作者: 郭洁 E-mail:susanliangxia@163.com;guojie@mail.sdufe.edu.cn
  • 作者简介:梁霞(1986—), 女, 副教授, 博士, 研究方向为管理决策分析、信息融合等. E-mail: susanliangxia@163.com
  • 基金资助:
    国家自然科学基金资助项目(72201155);山东省社科规划项目(21CGLJ12);山东省高等学校青年创新团队发展计划项目(2021RW020)

A method of online teaching platform selection based on online reviews

Xia LIANG(),Jie GUO*()   

  1. School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, Shandong, China
  • Received:2023-07-28 Online:2024-09-20 Published:2024-10-10
  • Contact: Jie GUO E-mail:susanliangxia@163.com;guojie@mail.sdufe.edu.cn

摘要:

为了更好地选择线上教学平台, 给予大学生更好的线上课程学习体验, 并为今后的线上教育教学提供参考, 提出一种基于在线评论的线上教学平台选择方法。首先, 利用爬虫技术搜集部分线上教学平台的用户评论, 采用NLPIR-ICTCLAS汉语分词系统进行分词。再运用TF-IDF算法提取属性词, 并结合人工挑选的方法获得属性集合, 利用均方差法确定属性的权重。然后, 对在线评论进行情感分析, 将用户情感倾向表示为关于评价标度的概率分布。在此基础上, 通过扩展的VIKOR法进行方案排序, 选出最优线上教学平台。最后, 通过实例和对比分析证明了本文所提方法的可行性。

关键词: 线上教学平台, 在线评论, 情感分析, TF-IDF算法

Abstract:

To better select online teaching platforms, give college students a better online course learning experience, and provide a reference for future online education and teaching, a method for selecting online teaching platforms based on online reviews is proposed. Firstly, user reviews from alternative online teaching platforms are collected by the crawler technology, and NLPIR-ICTCLAS Chinese word separation system is used to separate online words. Next, attribute word extraction is conducted using TF-IDF algorithm, along with a method that was manually selected to obtain the attribute set. The weights of attributes are determined using the mean square deviation method. Subsequently, sentiment analysis is carried out on the online reviews, with user emotional orientations represented as probability distributions regarding the evaluation scale. On this basis, the extended VIKOR method is used to select the optimal online teaching platform. Finally, the feasibility of the method proposed in this paper is demonstrated through an example and comparative analysis.

Key words: online teaching platform, online review, sentiment analysis, TF-IDF algorithm

中图分类号: 

  • C934

表1

部分情感词及情感态度"

情感态度 情感词
E+   完美、全、丰富、划算、值得、好、满意、可信赖、赞、合理、称心如意、多、名不虚传、丰厚、显著、负责、上头、便宜、周到、负责, 专业、方便、灵活、容易、纯正、耐心、nice等
E 一般、还行、凑合、很正常、差不多、普通、还可以等
E- 贵、垃圾、鸡肋、少、差、差评、破、欺骗、太难了、糊弄、烦、反感、过分、恶劣、头疼、five等

表2

程度词及其分值"

分值 程度词
1 有点、颇为、稍微、挺、些微、多少、有些、略、略微、比较、较为、颇、蛮、过于、较、巨
2   很、最、非常、尤为、绝对、过于、很、相当、超、特别、分外、十分、甚、尤其、无比、更、越、更加、老、格外、惊人地、灰常、极、太、至、超级、very

表3

m个备选方案关于属性Bj的评价"

H A1 A2 Am
H1 p1j1 p2j1 pmj1
H2 p1j2 p2j2 pmj2
H3 p1j3 p2j3 pmj3
H4 p1j4 p2j4 pmj4
H5 p1j5 p2j5 pmj5

表4

属性词及TF-IDF值"

属性词 TF-IDF值 属性词 TF-IDF值
广告 0.570 643 942 287 151 80 功能 0.073 945 348 040 433 440
软件 0.424 827 148 550 505 70 电脑 0.068 936 544 982 383 900
视频 0.241 131 954 399 649 16 学校 0.064 617 177 402 105 260
课程 0.233 154 040 135 521 16 客服 0.062 628 465 681 981 420
手机 0.165 600 998 484 127 96 摄像头 0.062 365 549 569 659 444
后台 0.105 635 165 620 433 43 太卡 0.061 686 106 826 109 390
分屏 0.098 697 770 921 775 02 版本 0.054 769 831 545 521 160
课堂 0.092 985 846 478 328 17 界面 0.054 127 692 586 749 224

表5

属性集"

属性 平台广告量 平台服务 平台资源 平台稳定性 平台适应性
符号 B1 B2 B3 B4 B5

表6

4个备选方案关于属性B1的分布"

H A1 A2 A3 A4
-2 5/13 0 78/125 0
-1 8/13 0 8/25 0
0 0 1 6/125 1
1 0 0 1/125 0
2 0 0 0 0

表7

4个备选方案关于属性B2的分布"

H A1 A2 A3 A4
-2 0 3/7 0 1/9
-1 7/8 3/7 0 7/9
0 1/8 1/7 1 1/9
1 0 0 0 0
2 0 0 0 0

表8

4个备选方案关于属性B3的分布"

H A1 A2 A3 A4
-2 2/47 0 0 0
-1 13/47 1/8 1/3 2/7
0 13/47 1/2 1/2 11/35
1 7/47 3/8 1/6 9/35
2 12/47 0 0 1/7

表9

4个备选方案关于属性B4的分布"

H A1 A2 A3 A4
-2 2/39 3/13 1/5 7/27
-1 7/13 5/13 3/10 8/27
0 11/39 4/13 2/5 8/27
1 4/39 1/13 1/10 1/9
2 1/39 0 0 1/27

表10

4个备选方案关于属性B5的分布"

H A1 A2 A3 A4
-2 5/34 2/21 5/21 3/28
-1 7/34 3/7 8/21 13/28
0 9/34 4/21 4/21 1/7
1 9/34 2/7 1/7 2/7
2 2/17 0 1/21 0

表11

各备选方案在不同属性下评价值的期望值"

H A1 A2 A3 A4
B1 -1.38 0 -1.56 0
B2 -0.88 -1.29 0 -1.00
B3 0.30 0.25 -0.17 0.26
B4 -0.49 -0.77 -0.60 -0.63
B5 0.00 -0.33 -0.62 -0.39

表12

正理想解Z+各分量的概率分布"

正理想解 H
-2 -1 0 1 2
z1+ 0 0 124/125 1/125 0
z2+ 0 6/7 1/7 0 0
z3+ 0 0 139/376 3/8 12/47
z4+ 0 61/135 2/5 1/9 1/27
z5+ 0 41/102 9/34 2/7 1/21

表13

负理想解Z -各分量的概率分布"

负理想解 H
-2 -1 0 1 2
z1- 78/125 47/125 0 0 0
z2- 3/7 4/7 0 0 0
z3- 2/47 1/3 1/2 35/282 0
z4- 7/27 7/13 71/351 0 0
z5- 5/21 1/2 11/42 0 0

表14

4个备选方案距的群体效用值和个体遗憾值"

备选方案 A1 A2 A3 A4
Ui 0.351 3 0.416 4 0.976 4 0.275 5
Ri 0.233 6 0.203 3 0.406 5 0.083 3

表15

4个备选方案距的折衷评估值"

备选方案 A1 A2 A3 A4
Ti 0.286 5 0.286 0 1 0

图1

不同参数η下的备选方案排序结果"

1 毕建武, 刘洋, 樊治平. 依据在线评论的商品排序方法[J]. 系统工程学报, 2018, 33 (3): 422- 432.
BI Jianwu , LIU Yang , FAN Zhiping . Method for ranking products through online reviews[J]. Journal of Systems Engineering, 2018, 33 (3): 422- 432.
2 由丽萍, 何玲玲. 基于框架语义的在线医疗评论情感分析[J]. 现代情报, 2020, 40 (3): 111-116, 125.
YOU Liping , HE Lingling . Sentiment analysis of medical online comments based on frame semantics[J]. Journal of Modern Information, 2020, 40 (3): 111-116, 125.
3 常青, 杨武健. 在线教育产品评论与用户使用意愿的关系[J]. 图书情报工作, 2020, 64 (17): 1- 10.
CHANG Qing , YANG Wujian . The relationship between online education product reviews and users' willingness to use[J]. Library and Information Service, 2020, 64 (17): 1- 10.
4 王安宁, 张强, 彭张林, 等. 在线评论的行为影响与价值应用研究综述[J]. 中国管理科学, 2021, 29 (12): 191- 202.
WANG Anning , ZHANG Qiang , PENG Zhanglin , et al. A review of behavioral influence and value application for online reviews[J]. Chinese Journal of Management Science, 2021, 29 (12): 191- 202.
5 李杨, 徐泽水, 王新鑫. 基于在线评论的情感分析方法及应用[J]. 控制与决策, 2023, 38 (2): 304- 317.
LI Yang , XU Zeshui , WANG Xinxin . Methods and applications of sentiment analysis with online reviews[J]. Control and Decision, 2023, 38 (2): 304- 317.
6 YANG Xian , YANG Guangfei , WU Jiangning . Integrating rich and heterogeneous information to design a ranking system for multiple products[J]. Decision Support Systems, 2016, 84, 117- 133.
doi: 10.1016/j.dss.2016.02.009
7 梁霞, 姜艳萍, 高梦. 基于在线评论的产品选择方法[J]. 东北大学学报(自然科学版), 2017, 38 (1): 143- 147.
LIANG Xia , JIANG Yanping , GAO Meng . Product selection methods based on online reviews[J]. Journal of Northeastern University (Natural Science), 2017, 38 (1): 143- 147.
8 DARKO A P , LIANG D C . A heterogeneous opinion-driven decision-support model for tourists' selection with different travel needs in online reviews[J]. Journal of the Operational Research Society, 2023, 74 (1): 272- 289.
doi: 10.1080/01605682.2022.2035274
9 尤天慧, 张瑾, 樊治平. 基于在线评价信息和消费者期望的商品选择方法[J]. 中国管理科学, 2017, 25 (11): 94- 102.
YOU Tianhui , ZHANG Jin , FAN Zhiping . Method for selecting desirable product(s) based on online rating information and customer's aspirations[J]. Chinese Journal of Management Science, 2017, 25 (11): 94- 102.
10 TIAN Zhangpeng , LIANG Heming , NIE Ruxin , et al. Data-driven multi-criteria decision support method for electric vehicle selection[J]. Computers & Industrial Engineering, 2023, 177, 109061.
11 LIANG Xia , GUO Jie , SUN Yan , et al. A method of product selection based on online reviews[J]. Mobile Information Systems, 2021, 9656315, 1- 16.
12 刘旭旺, 王骏嘉, 齐微, 等. 基于在线评论的产品上市模式选择策略研究[J]. 系统工程, 2023,
LIU Xuwang , WANG Junjia , QI Wei , et al. Product launch mode selection strategy based on online reviews[J]. Systems Engineering, 2023,
13 张培行. 基于在线评论文本分析的汽车产品选择方法研究[D]. 合肥: 合肥工业大学, 2019.
ZHANG Peihang. Research on automobile product selection method based on online comment text analysis[D]. Hefei: Hefei University of Technology, 2019.
14 BI Jianwu , LIU Yang , FAN Zhiping . Representing sentiment analysis results of online reviews using interval type-2 fuzzy numbers and its application to product ranking[J]. Information Sciences, 2019, 504, 293- 307.
doi: 10.1016/j.ins.2019.07.025
15 NIE Ruxin , TIAN Zhangpeng , WANG Jianqiang , et al. Hotel selection driven by online textual reviews: applying a semantic partitioned sentiment dictionary and evidence theory[J]. International Journal of Hospitality Management, 2020, 88, 1- 16.
16 ZHANG Dong , WU Chong , LIU Jiaming . Ranking products with online reviews: a novel method based on hesitant fuzzy set and sentiment word framework[J]. Journal of the Operational Research Society, 2020, 71 (3): 528- 542.
doi: 10.1080/01605682.2018.1557021
17 赵宇晴, 阮平南, 刘晓燕, 等. 基于在线评论的用户满意度评价研究[J]. 管理评论, 2020, 32 (3): 179- 189.
ZHAO Yuging , RUAN Pingnan , LIU Xiaoyan , et al. Study on user satisfaction evaluation based on online comment[J]. Management Review, 2020, 32 (3): 179- 189.
18 史达, 王乐乐, 衣博文. 在线评论有用性的深度数据挖掘: 基于TripAdvisor的酒店评论数据[J]. 南开管理评论, 2020, 23 (5): 64- 75.
SHI Da , WANG Lele , YI Bowen . Deep data mining for online reviews usefulness: hotel reviews data on TripAdvisor[J]. Nankai Business Review, 2020, 23 (5): 64- 75.
19 贾文军, 郭玉婷, 赵泽宁. 大学生在线学习体验的聚类分析研究[J]. 中国高教研究, 2020, (4): 23- 27.
JIA Wenjun , GUO Yuting , ZHAO Zening . Clustering analysis of college students' online learning experience[J]. China Higher Education Research, 2020, (4): 23- 27.
20 程龙. 基于改进TF-IDF算法的信息抽取系统设计与实现[D]. 北京邮电大学, 2019.
CHENG Long. Design and implementation of information extraction system based on improved TF-IDF algorithm[D]. Beijing University of Posts and Telecommunications, 2019.
21 王根生, 黄学坚. 基于Word2vec和改进型TF-IDF的卷积神经网络文本分类模型[J]. 小型微型计算机系统, 2019, 40 (5): 1120- 1126.
WANG Gensheng , HUANG Xuejian . Convolution neural network text classification model based on Word2Vec and improved TF-IDF[J]. Journal of Chinese Computer Systems, 2019, 40 (5): 1120- 1126.
22 ZHUO Zhou , QIN Jiaohua , XIANG Xuyu , et al. News text topic clustering optimized method based on TF-IDF algorithm on spark[J]. CMC: Computers, Materials & Continua, 2020, 62 (1): 217- 231.
23 LIU Yang , BI Jianwu , FAN Zhiping . Ranking products through online reviews: a method based on sentiment analysis technique and intuitionistic fuzzy set theory[J]. Information Fusion, 2016, 36, 149- 161.
24 JIANG Yanping , LIANG Haiming , SUN Minghe . A method for discrete stochastic MADM problems based on the ideal and nadir solutions[J]. Computers & Industrial Engineering, 2015, 87, 114- 125.
[1] 卢婵,郭军军,谭凯文,相艳,余正涛. 基于文本指导的层级自适应融合的多模态情感分析[J]. 《山东大学学报(理学版)》, 2023, 58(12): 31-40, 51.
[2] 吴洁,朱小飞,张宜浩,龙建武,黄贤英,杨武. 基于用户情感倾向感知的微博情感分析方法[J]. 《山东大学学报(理学版)》, 2019, 54(3): 46-55.
[3] 陈鑫,薛云,卢昕,李万理,赵洪雅,胡晓晖. 基于保序子矩阵和频繁序列模式挖掘的文本情感特征提取方法[J]. 山东大学学报(理学版), 2018, 53(3): 36-45.
[4] 余传明,冯博琳,田鑫,安璐. 基于深度表示学习的多语言文本情感分析[J]. 山东大学学报(理学版), 2018, 53(3): 13-23.
[5] 何炎祥, 刘健博, 孙松涛, 文卫东. 基于层叠条件随机场的微博商品评论情感分类[J]. 山东大学学报(理学版), 2015, 50(11): 67-73.
[6] 朱珠, 李寿山, 戴敏, 周国栋. 结合主动学习和自动标注的评价对象抽取方法[J]. 山东大学学报(理学版), 2015, 50(07): 38-44.
[7] 戚方丽, 崔雪莲, 那日萨. 基于在线评论的品牌再购意向模糊推理方法[J]. 山东大学学报(理学版), 2015, 50(07): 17-22.
[8] 周文, 张书卿, 欧阳纯萍, 刘志明, 阳小华. 基于情感依存元组的新闻文本主题情感分析[J]. 山东大学学报(理学版), 2014, 49(12): 1-6.
[9] 宋爽, 那日萨, 张杨. 基于在线评论的消费者品牌转换意向模糊推理[J]. 山东大学学报(理学版), 2014, 49(12): 7-11.
[10] 孙松涛, 何炎祥, 蔡瑞, 李飞, 贺飞艳. 面向微博情感评测任务的多方法对比研究[J]. 山东大学学报(理学版), 2014, 49(11): 43-50.
[11] 杨佳能, 阳爱民, 周咏梅. 基于语义分析的中文微博情感分类方法[J]. 山东大学学报(理学版), 2014, 49(11): 14-21.
[12] 朱玺, 董喜双, 关毅, 刘志广. 基于半监督学习的微博情感倾向性分析[J]. 山东大学学报(理学版), 2014, 49(11): 37-42.
[13] 夏梦南, 杜永萍, 左本欣. 基于依存分析与特征组合的微博情感分析[J]. 山东大学学报(理学版), 2014, 49(11): 22-30.
[14] 张成功1,2,刘培玉1,2*,朱振方1,2,方明1,2. 一种基于极性词典的情感分析方法[J]. J4, 2012, 47(3): 47-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王廷明,黎伯堂 . 一类矩阵秩恒等式的证明[J]. J4, 2007, 42(2): 43 -45 .
[2] 付永红1 ,余眝妙2 ,唐应辉3 ,李才良4 . 两水平修理策略下的M/(Mr,Gs)/1/N/N机器维修模型稳态概率算法与性能分析[J]. J4, 2009, 44(4): 72 -78 .
[3] 郭兰兰1,2,耿介1,石硕1,3,苑飞1,雷丽1,杜广生1*. 基于UDF方法的阀门变速关闭过程中的#br# 水击压强计算研究[J]. 山东大学学报(理学版), 2014, 49(03): 27 -30 .
[4] 史开泉. 信息规律智能融合与软信息图像智能生成[J]. 山东大学学报(理学版), 2014, 49(04): 1 -17 .
[5] 章 玲,周德群 . λ模糊测度及其Mbius变换和关联系数间关系的推导[J]. J4, 2007, 42(7): 33 -37 .
[6] 丁超1,2, 元昌安1,3*, 覃晓1,3. 基于GEP的多数据流预测算法[J]. J4, 2010, 45(7): 50 -54 .
[7] 张德瑜,翟文广 . 关于整数n的k次补数[J]. J4, 2006, 41(5): 4 -07 .
[8] 邹国平1,马儒宁1,丁军娣2,钟宝江3. 基于显著性加权颜色和纹理的图像检索[J]. J4, 2010, 45(7): 81 -85 .
[9] 陈 莉 . 不确定奇异系统的鲁棒故障诊断滤波器设计[J]. J4, 2007, 42(7): 62 -65 .
[10] 曾文赋1,黄添强1,2,李凯1,余养强1,郭躬德1,2. 基于调和平均测地线核的局部线性嵌入算法[J]. J4, 2010, 45(7): 55 -59 .