《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (9): 108-118.doi: 10.6040/j.issn.1671-9352.0.2023.334
梁霞,郭洁*
LIANG Xia, GUO Jie*
摘要: 为了更好地选择线上教学平台,给予大学生更好的线上课程学习体验,并为今后的线上教育教学提供参考,提出一种基于在线评论的线上教学平台选择方法。首先,利用爬虫技术搜集部分线上教学平台的用户评论,采用NLPIR-ICTCLAS汉语分词系统进行分词。再运用TF-IDF算法提取属性词,并结合人工挑选的方法获得属性集合,利用均方差法确定属性的权重。然后,对在线评论进行情感分析,将用户情感倾向表示为关于评价标度的概率分布。在此基础上,通过扩展的VIKOR法进行方案排序,选出最优线上教学平台。最后,通过实例和对比分析证明了本文所提方法的可行性。
中图分类号:
[1] 毕建武,刘洋,樊治平. 依据在线评论的商品排序方法[J]. 系统工程学报, 2018, 33(3):422-432. BI Jianwu, LIU Yang, FAN Zhiping. Method for ranking products through online reviews[J]. Journal of Systems Engineering, 2018, 33(3):422-432. [2] 由丽萍,何玲玲. 基于框架语义的在线医疗评论情感分析[J]. 现代情报, 2020, 40(3):111-116,125. YOU Liping, HE Lingling. Sentiment analysis of medical online comments based on frame semantics[J]. Journal of Modern Information, 2020, 40(3):111-116,125. [3] 常青,杨武健. 在线教育产品评论与用户使用意愿的关系[J]. 图书情报工作, 2020, 64(17):1-10. CHANG Qing, YANG Wujian. The relationship between online education product reviews and users willingness to use[J]. Library and Information Service, 2020, 64(17):1-10. [4] 王安宁,张强,彭张林,等. 在线评论的行为影响与价值应用研究综述[J]. 中国管理科学, 2021, 29(12):191-202. WANG Anning, ZHANG Qiang, PENG Zhanglin, et al. A review of behavioral influence and value application for online reviews[J]. Chinese Journal of Management Science, 2021, 29(12):191-202. [5] 李杨,徐泽水,王新鑫. 基于在线评论的情感分析方法及应用[J]. 控制与决策, 2023, 38(2):304-317. LI Yang, XU Zeshui, WANG Xinxin. Methods and applications of sentiment analysis with online reviews[J]. Control and Decision, 2023, 38(2):304-317. [6] YANG Xian, YANG Guangfei, WU Jiangning. Integrating rich and heterogeneous information to design a ranking system for multiple products[J]. Decision Support Systems, 2016, 84:117-133. [7] 梁霞,姜艳萍,高梦. 基于在线评论的产品选择方法[J]. 东北大学学报(自然科学版), 2017, 38(1):143-147. LIANG Xia, JIANG Yanping, GAO Meng. Product selection methods based on online reviews[J]. Journal of Northeastern University(Natural Science), 2017, 38(1):143-147. [8] DARKO A P, LIANG D C. A heterogeneous opinion-driven decision-support model for tourists selection with different travel needs in online reviews[J]. Journal of the Operational Research Society, 2023, 74(1):272-289. [9] 尤天慧,张瑾,樊治平. 基于在线评价信息和消费者期望的商品选择方法[J]. 中国管理科学, 2017, 25(11):94-102. YOU Tianhui, ZHANG Jin, FAN Zhiping. Method for selecting desirable product(s)based on online rating information and customers aspirations[J]. Chinese Journal of Management Science, 2017, 25(11):94-102. [10] TIAN Zhangpeng, LIANG Heming, NIE Ruxin, et al. Data-driven multi-criteria decision support method for electric vehicle selection[J]. Computers & Industrial Engineering, 2023, 177:109061. [11] LIANG Xia, GUO Jie, SUN Yan, et al. A method of product selection based on online reviews[J]. Mobile Information Systems, 2021, 9656315:1-16. [12] 刘旭旺,王骏嘉,齐微,等. 基于在线评论的产品上市模式选择策略研究[J]. 系统工程, 2023. LIU Xuwang, WANG Junjia, QI Wei, et al. Product launch mode selection strategy based on online reviews[J]. Systems Engineering, 2023. [13] 张培行. 基于在线评论文本分析的汽车产品选择方法研究[D]. 合肥:合肥工业大学, 2019. ZHANG Peihang. Research on automobile product selection method based on online comment text analysis[D]. Hefei: Hefei University of Technology, 2019. [14] BI Jianwu, LIU Yang, FAN Zhiping. Representing sentiment analysis results of online reviews using interval type-2 fuzzy numbers and its application to product ranking[J]. Information Sciences, 2019, 504:293-307. [15] NIE Ruxin, TIAN Zhangpeng, WANG Jianqiang, et al. Hotel selection driven by online textual reviews: applying a semantic partitioned sentiment dictionary and evidence theory[J]. International Journal of Hospitality Management, 2020, 88:1-16. [16] ZHANG Dong, WU Chong, LIU Jiaming. Ranking products with online reviews: a novel method based on hesitant fuzzy set and sentiment word framework[J]. Journal of the Operational Research Society, 2020, 71(3):528-542. [17] 赵宇晴,阮平南,刘晓燕,等. 基于在线评论的用户满意度评价研究[J]. 管理评论,2020,32(3):179-189. ZHAO Yuging, RUAN Pingnan, LIU Xiaoyan, et al. Study on user satisfaction evaluation based on online comment[J]. Management Review, 2020, 32(3):179-189. [18] 史达,王乐乐,衣博文. 在线评论有用性的深度数据挖掘: 基于TripAdvisor的酒店评论数据[J]. 南开管理评论,2020,23(5): 64-75. SHI Da, WANG Lele, YI Bowen. Deep data mining for online reviews usefulness: hotel reviews data on TripAdvisor[J]. Nankai Business Review, 2020, 23(5):64-75. [19] 贾文军,郭玉婷,赵泽宁. 大学生在线学习体验的聚类分析研究[J]. 中国高教研究, 2020(4):23-27. JIA Wenjun, GUO Yuting, ZHAO Zening. Clustering analysis of college students online learning experience[J]. China Higher Education Research, 2020(4):23-27. [20] 程龙. 基于改进TF-IDF算法的信息抽取系统设计与实现[D]. 北京邮电大学, 2019. CHENG Long. Design and implementation of information extraction system based on improved TF-IDF algorithm[D]. Beijing University of Posts and Telecommunications, 2019. [21] 王根生,黄学坚. 基于Word2vec和改进型TF-IDF的卷积神经网络文本分类模型[J]. 小型微型计算机系统, 2019, 40(5):1120-1126. WANG Gensheng, HUANG Xuejian. Convolution neural network text classification model based on Word2Vec and improved TF-IDF[J]. Journal of Chinese Computer Systems, 2019, 40(5):1120-1126. [22] ZHUO Zhou, QIN Jiaohua, XIANG Xuyu, et al. News text topic clustering optimized method based on TF-IDF algorithm on spark [J]. CMC: Computers, Materials & Continua, 2020, 62(1):217-231. [23] LIU Yang, BI Jianwu, FAN Zhiping. Ranking products through online reviews: a method based on sentiment analysis technique and intuitionistic fuzzy set theory[J]. Information Fusion, 2016, 36:149-161. [24] JIANG Yanping, LIANG Haiming, SUN Minghe. A method for discrete stochastic MADM problems based on the ideal and nadir solutions [J]. Computers & Industrial Engineering, 2015, 87:114-125. |
[1] | 卢婵,郭军军,谭凯文,相艳,余正涛. 基于文本指导的层级自适应融合的多模态情感分析[J]. 《山东大学学报(理学版)》, 2023, 58(12): 31-40, 51. |
[2] | 吴洁,朱小飞,张宜浩,龙建武,黄贤英,杨武. 基于用户情感倾向感知的微博情感分析方法[J]. 《山东大学学报(理学版)》, 2019, 54(3): 46-55. |
[3] | 陈鑫,薛云,卢昕,李万理,赵洪雅,胡晓晖. 基于保序子矩阵和频繁序列模式挖掘的文本情感特征提取方法[J]. 山东大学学报(理学版), 2018, 53(3): 36-45. |
[4] | 余传明,冯博琳,田鑫,安璐. 基于深度表示学习的多语言文本情感分析[J]. 山东大学学报(理学版), 2018, 53(3): 13-23. |
[5] | 何炎祥, 刘健博, 孙松涛, 文卫东. 基于层叠条件随机场的微博商品评论情感分类[J]. 山东大学学报(理学版), 2015, 50(11): 67-73. |
[6] | 朱珠, 李寿山, 戴敏, 周国栋. 结合主动学习和自动标注的评价对象抽取方法[J]. 山东大学学报(理学版), 2015, 50(07): 38-44. |
[7] | 戚方丽, 崔雪莲, 那日萨. 基于在线评论的品牌再购意向模糊推理方法[J]. 山东大学学报(理学版), 2015, 50(07): 17-22. |
[8] | 周文, 张书卿, 欧阳纯萍, 刘志明, 阳小华. 基于情感依存元组的新闻文本主题情感分析[J]. 山东大学学报(理学版), 2014, 49(12): 1-6. |
[9] | 宋爽, 那日萨, 张杨. 基于在线评论的消费者品牌转换意向模糊推理[J]. 山东大学学报(理学版), 2014, 49(12): 7-11. |
[10] | 孙松涛, 何炎祥, 蔡瑞, 李飞, 贺飞艳. 面向微博情感评测任务的多方法对比研究[J]. 山东大学学报(理学版), 2014, 49(11): 43-50. |
[11] | 杨佳能, 阳爱民, 周咏梅. 基于语义分析的中文微博情感分类方法[J]. 山东大学学报(理学版), 2014, 49(11): 14-21. |
[12] | 朱玺, 董喜双, 关毅, 刘志广. 基于半监督学习的微博情感倾向性分析[J]. 山东大学学报(理学版), 2014, 49(11): 37-42. |
[13] | 夏梦南, 杜永萍, 左本欣. 基于依存分析与特征组合的微博情感分析[J]. 山东大学学报(理学版), 2014, 49(11): 22-30. |
[14] | 张成功1,2,刘培玉1,2*,朱振方1,2,方明1,2. 一种基于极性词典的情感分析方法[J]. J4, 2012, 47(3): 47-50. |
|