《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 95-105.doi: 10.6040/j.issn.1671-9352.0.2023.427
• • 上一篇
吴奇,杨沿奇*,陶双平
WU Qi, YANG Yanqi*, TAO Shuangping
摘要: 利用双权估计和函数分解方法, 并借助乘积Lp(·)空间上的加权有界性得到双线性θ-型Calderón-Zygmund算子在双权可变指数Herz空间上的有界性。
中图分类号:
[1] YABUTA K. Generalizations of Calderón-Zygmund operators[J]. Studia Mathematica, 1985, 82(1):17-31. [2] COIFMAN R R, MEYER Y. Au-delà des opérateurs pseudo-différentiels[M]. Paris: Société mathématique de France, 1978:76-116. [3] LIU Z G, LU S Z. Endpoint estimates for commutators of Calderón-Zygmund type operators[J]. Kodai Mathematical Journal, 2002, 25(1):79-88. [4] ZHANG P, XU H. Sharp weighted estimates for commutators of Calderón-Zygmund type operators[J]. Acta Mathematica Sinica, 2005, 48(4):625-636. [5] DIENING L, RUICKA M. Calderón-Zygmund operators on generalized Lebesgue spaces Lp(·) and problems related to fluid dynamics[J]. Journal FürDie Reine und Angewandte Mathematik, 2003(563):197-220. [6] LIU W Q, LU S Z. Calderón-Zygmundoperaors on the Hardy spaces of weighted Herz type[J]. Approximation Theory and Its Applications, 1997, 13(2):1-10. [7] SHEN C H, XU J S. A vector-valued estimate of multilinear Calderón-Zygmund operators in Herz-Morrey spaces with variable exponents[J]. Hokkaido Mathematical Journal, 2017, 46(3):351-380. [8] ZHENG T T, TAO X X, WU X M. Bilinear Calderón-Zygmund operators of type ω(t) on non-homogeneous space[J]. Journal of Inequalities and Applications, 2014(1):1-18. [9] YANG Y Q, TAO S P. θ-type Calderón-Zygmund operators and commutators in variable exponents Herz space[J]. Open Mathematics, 2018, 16(1):1607-1620. [10] YANG Y Q, TAO S P. θ-type Calderón-Zygmund operators on Morrey and Morrey-Herz-type Hardy spaces with variable exponents[J]. Politehn Univ Bucharest Sci Bull Ser A Appl Math Phys, 2020, 82(1):35-44. [11] GULIYEV V S. Calderón-Zygmund operators with kernels of Dinis type on generalized weighted variable exponent Morrey spaces[J]. Positivity, 2021, 25(5):1771-1788. [12] ACERBI E, MINGIONE G. Regularity results for stationary electro-rheological fluids[J]. Archive for Rational Mechanics and Analysis, 2002, 164(3):213-259. [13] MINGIONE G, ACERBI E. Gradient estimates for a class of parabolic systems[J]. Duke Mathematical Journal, 2007, 136(1):285-320. [14] CRUZ-URIBE D, FIORENZA A, MARTELL J M, et al. The boundedness of classical operators on variable L-p spaces[J]. Annales Academiae Scientiarum Fennicae Mathematica, 2006, 31(1):239-264. [15] IZUKI M. Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system[J]. East journal on approximations, 2009, 15(1):87-110. [16] IZUKI M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent[J]. Glasnik Matematicki, 2010, 45(2):475-503. [17] IZUKI M. Boundedness of commutators on Herz spaces with variable exponent[J]. Rendiconti del Circolo Matematico di Palermo, 2010, 59(2):199-213. [18] IZUKI M, NOI T. Boundedness of fractional integrals on weighted Herz spaces with variable exponent[J]. Journal of Inequalities and Applications, 2016, 2016(1):1-11. [19] IZUKI M, NOI T. Two weighted herz spaces with variable exponents[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43(1):169-200. [20] PÉREZ C. On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted L-p spaces with different weights[J]. Proceedings of the London Mathematical Society, 1995, 71(1):135-157. [21] ZUZAO J D. Fourier analysis[M]. Providence: American Mathematical Soc, 2001:133-156. [22] LU G Z, ZHANG P. Multilinear Calderón-Zygmund operators with kernels of Dinis type and applications[J]. Nonlinear Analysis, 2014, 107:92-117. [23] IZUKI M, NOI T. An intrinsic square function on weighted Herz spaces with variable exponent[J]. Journal of Mathematical Inequalities, 2017, 11(3):799-816. |
[1] | 李雪梅,张铮,逯光辉Symbol`@@. 与球拟Banach函数空间相关的广义Morrey空间上参数型Littlewood-Paley算子及高阶交换子[J]. 《山东大学学报(理学版)》, 2025, 60(8): 86-94. |
[2] | 李春平,桑彦彬. 具有变号权函数的分数阶p-q-Laplacian方程组的多重解[J]. 《山东大学学报(理学版)》, 2022, 57(8): 95-102. |
[3] | 李永明,聂彩玲,刘超,郭建华. 负超可加阵列下非参数回归函数估计的相合性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 69-74. |
[4] | 黄玲玲,赵凯. 变量核参数型Marcinkiewicz积分算子在加权Campanato空间的有界性[J]. 山东大学学报(理学版), 2016, 51(10): 1-5. |
[5] | 王金苹,赵凯. 变指标Herz型空间上分数次积分的Lipschitz交换子[J]. 山东大学学报(理学版), 2016, 51(10): 6-10. |
[6] | 周淑娟,刘素英. 线性算子在各向异性加权Herz型Hardy空间上的有界性[J]. 山东大学学报(理学版), 2014, 49(04): 74-78. |
[7] | 赵凯,纪春静,黄智. 一类Marcinkiewicz积分交换子在Herz型Hardy空间中的有界性[J]. J4, 2013, 48(6): 1-4. |
[8] | 陈翠. 加权型空间上的n阶微分复合算子[J]. J4, 2013, 48(4): 57-59. |
[9] | 蒋晓宇. Bloch-type空间到Zygmund-type空间的微分复合算子[J]. J4, 2013, 48(4): 51-56. |
[10] | 耿素丽,赵凯*,张立平. 非双倍测度下的Littlewood-Paley算子的有界性[J]. J4, 2013, 48(10): 78-81. |
[11] | 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83-88. |
[12] | 赵凯,孙晓华,杜宏彬. Littlewood-Paley算子在加权Herz空间的弱有界性[J]. J4, 2012, 47(4): 62-65. |
[13] | 张红霞1,孔祥智2. 一类关于两个积分变量的积分不等式及其应用[J]. J4, 2011, 46(8): 52-58. |
[14] | 杨萍,曹怀信*,司海燕. 广义模糊赋范空间中的模糊闭集和模糊开集[J]. J4, 2011, 46(4): 113-117. |
[15] | 杨必成. 关于一个非齐次核的Hilbert型积分不等式及其推广[J]. J4, 2011, 46(2): 123-126. |
|