《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (12): 69-74.doi: 10.6040/j.issn.1671-9352.0.2018.076
李永明1,3,聂彩玲2,刘超1,郭建华1
LI Yong-ming1,3, NIE Cai-ling2, LIU Chao1, GUO Jian-hua1
摘要: 对于随机误差是负超可加阵列情形,考虑了非参数回归模型中未知回归函数的估计问题。在较合理的条件下获得了未知回归函数加权估计量的强相合性。
中图分类号:
[1] HU Taizhong. Negatively superadditive dependence of random variables with application[J]. Chinese Journal of Applied Probability and Statistics, 2000, 16(2):133-144. [2] CHRISTOFIDES T C, VAGGELATOU E. A connection between supermodular ordering and positive/negative association[J]. Journal of Multivariate Analysis, 2014, 88:138-151. [3] EGHBAL N, AMINI M, BOZORGNIA A. Some maximal inequalities for quadratic forms of negative superadditive dependence random variables[J]. Statistics and Probability Letters, 2010, 80:587-591. [4] EGHBAL N, AMINI M, BOZORGNIA A. On the Kolmogorov inequalities for quadratic forms of dependent uniformly bounded random variabes[J]. Statistics and Probability Letters, 2011, 81:1112-1120. [5] WU Yi, WANG Xuejun, HU Shuhe. Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications[J]. Applied Mathematics: A Journal of Chinese Universities, 2016, 48(4):834-850. [6] WANG Xuejun, SHEN Aiting, CHEN Zhiyong, et al. Complete convergence for weighted sums of NSD random variables and its application in the EV regression model[J]. TEST, 2015, 24(1):166-184. [7] 杨善朝. 基于鞅序列非参数回归权函数的估计[J]. 系统科学与数学, 1999, 19(1):79-85. YANG Shanchao. The estimation of nonparametric regression function based on martingale sequence[J]. Journal of Systems Science and Mathematical Sciences, 1999, 19(1):79-85. [8] TRAN L T, IOANNIDES D A, ROUSSAS G G. Fixed design regression for time series: asymptotic normality[M]. Salt Lake City: Academic Press, Inc, 1992. [9] YANG Shanchao. Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples[J]. Statistics and Probability Letters, 2003, 62(2):101-110. [10] FAN Y. Consistent nonparametric multiple regression for dependent heterogeneous processes: the fixed design case[J]. Journal of Multivariate Analysis, 2008, 33(1):72-88. [11] SHEN Aiting, ZHANG Y, VOLODIN A. Applications of the Rosenthal-type inequality for negatively superadditive dependent random variables[J]. Metrika, 2015, 78:295-311. [12] 吴群英. 混合序列的概率极限理论[M]. 北京: 科学出版社, 2006. WU Qunying. Probability limit theory of mixed sequence[M]. Beijing: Science Press, 2006. [13] ROUSSAS G G. Consistent regression estimation with fixed design points under dependence conditions[J]. Statistics and Probability Letters, 1989, 8(1):41-50. |
[1] | 胡学平,张红梅. WOD样本下密度函数核估计的收敛性[J]. 山东大学学报(理学版), 2017, 52(4): 21-25. |
[2] | 李永明,邓绍坚,蒋伟红. END样本下递归密度函数估计的相合性[J]. 山东大学学报(理学版), 2017, 52(11): 54-59. |
[3] | 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83-88. |
[4] | 叶彩园,吴群英*,伍欣叶. 删失数据下NA样本核密度估计的相合性[J]. J4, 2013, 48(09): 40-45. |
|