您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (12): 69-74.doi: 10.6040/j.issn.1671-9352.0.2018.076

• • 上一篇    下一篇

负超可加阵列下非参数回归函数估计的相合性

李永明1,3,聂彩玲2,刘超1,郭建华1   

  1. 1.上饶师范学院数学与计算机科学学院, 江西 上饶 334001;2.南昌大学理学院, 江西 南昌 330000;3.上海财经大学统计与管理学院, 上海 200433
  • 出版日期:2018-12-20 发布日期:2018-12-18
  • 作者简介:李永明(1970— ),男,硕士,教授,研究方向为非参数统计. E-mail:lym1019@163.com
  • 基金资助:
    国家自然科学基金资助项目(11461057,11561010);江西省自然科学基金资助项目(20161BAB201003);国家自然科学基金委重点项目(71331006,91546202);长江学者和教育部创新团队发展计划项目(IRT13077)

Consistency of estimator of nonparametric regression function for arrays of rowwise NSD

LI Yong-ming1,3, NIE Cai-ling2, LIU Chao1, GUO Jian-hua1   

  1. 1. School of Mathematics and Computer Science, Shangrao Normal University, Shangrao 334001, Jiangxi, China;
    2. College of Sciences, Nanchang University, Nangchang 330000, Jiangxi, China;
    3. School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China
  • Online:2018-12-20 Published:2018-12-18

摘要: 对于随机误差是负超可加阵列情形,考虑了非参数回归模型中未知回归函数的估计问题。在较合理的条件下获得了未知回归函数加权估计量的强相合性。

关键词: 非参数回归函数, 负超可加序列, 权函数估计, 强相合性

Abstract: With the random error of arrays of rowwise NSD, the estimation of the unknown regression function in the nonparametric regression model is considered. Under certain conditions, the strong consistency of the weighted estimator of the unknown regression function is obtained.

Key words: nonparmetric regression function, NSD sequences, weighted function estimator, strong consistency

中图分类号: 

  • O211.67
[1] HU Taizhong. Negatively superadditive dependence of random variables with application[J]. Chinese Journal of Applied Probability and Statistics, 2000, 16(2):133-144.
[2] CHRISTOFIDES T C, VAGGELATOU E. A connection between supermodular ordering and positive/negative association[J]. Journal of Multivariate Analysis, 2014, 88:138-151.
[3] EGHBAL N, AMINI M, BOZORGNIA A. Some maximal inequalities for quadratic forms of negative superadditive dependence random variables[J]. Statistics and Probability Letters, 2010, 80:587-591.
[4] EGHBAL N, AMINI M, BOZORGNIA A. On the Kolmogorov inequalities for quadratic forms of dependent uniformly bounded random variabes[J]. Statistics and Probability Letters, 2011, 81:1112-1120.
[5] WU Yi, WANG Xuejun, HU Shuhe. Complete convergence for arrays of rowwise negatively superadditive-dependent random variables and its applications[J]. Applied Mathematics: A Journal of Chinese Universities, 2016, 48(4):834-850.
[6] WANG Xuejun, SHEN Aiting, CHEN Zhiyong, et al. Complete convergence for weighted sums of NSD random variables and its application in the EV regression model[J]. TEST, 2015, 24(1):166-184.
[7] 杨善朝. 基于鞅序列非参数回归权函数的估计[J]. 系统科学与数学, 1999, 19(1):79-85. YANG Shanchao. The estimation of nonparametric regression function based on martingale sequence[J]. Journal of Systems Science and Mathematical Sciences, 1999, 19(1):79-85.
[8] TRAN L T, IOANNIDES D A, ROUSSAS G G. Fixed design regression for time series: asymptotic normality[M]. Salt Lake City: Academic Press, Inc, 1992.
[9] YANG Shanchao. Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples[J]. Statistics and Probability Letters, 2003, 62(2):101-110.
[10] FAN Y. Consistent nonparametric multiple regression for dependent heterogeneous processes: the fixed design case[J]. Journal of Multivariate Analysis, 2008, 33(1):72-88.
[11] SHEN Aiting, ZHANG Y, VOLODIN A. Applications of the Rosenthal-type inequality for negatively superadditive dependent random variables[J]. Metrika, 2015, 78:295-311.
[12] 吴群英. 混合序列的概率极限理论[M]. 北京: 科学出版社, 2006. WU Qunying. Probability limit theory of mixed sequence[M]. Beijing: Science Press, 2006.
[13] ROUSSAS G G. Consistent regression estimation with fixed design points under dependence conditions[J]. Statistics and Probability Letters, 1989, 8(1):41-50.
[1] 胡学平,张红梅. WOD样本下密度函数核估计的收敛性[J]. 山东大学学报(理学版), 2017, 52(4): 21-25.
[2] 李永明,邓绍坚,蒋伟红. END样本下递归密度函数估计的相合性[J]. 山东大学学报(理学版), 2017, 52(11): 54-59.
[3] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83-88.
[4] 叶彩园,吴群英*,伍欣叶. 删失数据下NA样本核密度估计的相合性[J]. J4, 2013, 48(09): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[3] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[4] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[5] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[6] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[7] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[8] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[9] 王碧玉,曹小红*. 算子矩阵的Browder定理的摄动[J]. 山东大学学报(理学版), 2014, 49(03): 90 -95 .
[10] 于秀清. P-集合的(σ,τ)-扩展模型与其性质[J]. 山东大学学报(理学版), 2014, 49(04): 90 -94 .