您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 32-36.doi: 10.6040/j.issn.1671-9352.0.2025.014

• • 上一篇    

关于次正规子群对群的n-可解性的影响

白一曼1,海进科1,2*   

  1. 1.伊犁师范大学数学与统计学院, 新疆 伊宁 835000;2.青岛大学数学与统计学院, 山东 青岛 266071
  • 发布日期:2025-11-11
  • 通讯作者: 海进科(1964— ),男,教授,博士,研究方向为有限群理论及其表示. E-mail:haijinke2002@aliyun.com
  • 作者简介:白一曼(2001— ),女,硕士研究生,研究方向为有限群理论. E-mail:2359729756@qq.com
  • 基金资助:
    国家自然科学基金资助项目(12471021)

The influence of subnormal subgroups on the n-solvability of groups

BAI Yiman1, HAI Jinke1,2*   

  1. 1. College of Mathematics and Statistics, Yili Normal University, Yining 835000, Xinjiang, China;
    2. College of Mathematics and Statistics, Qingdao University, Qingdao 266071, Shandong, China
  • Published:2025-11-11

摘要: 设n是一个整数(正、负或零),证明2个有限n-可解群H和K生成的群〈H,K〉在其中一个子群是次正规条件下仍是有限n-可解群。证明如果有限群G的所有非n-幂零真子群皆次正规且n-可解,则G是n-可解群。

关键词: n-可解群, 次正规子群, 正规闭包

Abstract: Let n be an integer(positive or negative or 0). In this paper, we prove that the group 〈H,K〉 generated by two finite n-soluble groups H and K is still a finite n-soluble group if one of the subgroups is subnormal. Moreover, it is proved that if all non-n-nilpotent proper subgroups of a finite group G are subnormal and n-soluble, then G is n-soluble.

Key words: n-soluble group, subnormal subgroup, normal closure

中图分类号: 

  • O152.1
[1] HAWTHORN I, GUO Y. Arbitrary functions in group theory[J]. New Zealand Journal of Mathematics, 2015, 45(1):1-9.
[2] POTT A. Finite geometry and character theory[M]. Berlin: Springer, 1995.
[3] BAER R. Factorization of n-soluble and n-nilpotent groups[J]. Proceedings of the American Mathematical Society, 1953, 4:15-26.
[4] HAWTHORN I. Nil series from arbitrary functions in group theory[J]. Commentationes Mathematicae Universitatis Carolinae, 2018, 59(1):1-13.
[5] 姜久亮. 关于n-可解群与n-幂零群的两个结果[J]. 数学杂志,1997, 17(4):445-449. JIANG Jiuliang. Two results of n-soluble group and n-nilpotent group[J]. Journal of Mathematics(PRC), 1997, 17(4):445-449.
[6] WIELANDT H. Über Produkte von nilpotenten gruppen[J]. Illinois Journal of Mathematics, 1958, 2:611-618.
[7] 徐明曜. 有限群导引(上)[M]. 北京:科学出版社,2001. XU Mingyao. Finite groups: an introduction[M]. Beijing: Science Press, 2001.
[8] BEIDLEMAN J, HEINEKEN H. Finite soluble groups whose subnormal subgroups permute with certain classes of subgroups[J]. Journal of Group Theory, 2003, 6(2):139-158.
[9] CHEN Chanchan, LU Jiakuan, LI Jinbao. Finite groups whose subgroups of even order are TI-subgroups or subnormal subgroups[J]. Advances in Mathematics, 2023, 52(5):883-886.
[10] SHI Jiantao. Finite groups in which every non-abelian subgroup is a TI-subgroup or a subnormal subgroup[J]. Journal of Algebra and Its Applications, 2019, 18(8):1950159.
[11] ROSE J S. A course on group theory[M]. London: Cambridge University Press, 1978.
[1] 马小箭,毛月梅. 关于有限群中非σ-次正规子群数量的探讨[J]. 《山东大学学报(理学版)》, 2025, 60(5): 9-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!