《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 9-12.doi: 10.6040/j.issn.1671-9352.0.2024.304
• 群论 • 上一篇
马小箭,毛月梅*
MA Xiaojian, MAO Yuemei*
摘要: 设G是一个有限群,nσ(G)表示G中所有非σ-次正规子群共轭类的个数。利用极小阶反例的证明方法和σ-次正规的一些性质,比较nσ(G)与|σ(G)|的数量关系,给出了σ-可解群的一个新的结论,并由此推广了已有的一些成果。
中图分类号:
[1] LU Jiakuan, WEI Meng. On solvability of finite groups with few non-normal subgroups[J]. Communications in Algebra, 2015, 43(5):1752-1756. [2] FENG Aifang, LIU Zuhua. Finite groups having exactly two conjugate classes of non-subnormal subgroups[J]. Communications in Algebra, 2015, 43(9):3840-3847. [3] LU Jiakuan, WEI Meng. On finite groups with non-subnormal subgroups[J]. Communications in Algebra, 2017, 45(5):2043-2046. [4] SKIBA A N. On σ-subnormal and σ-permutable subgroups of finite groups[J]. Journal of Algebra, 2015, 436:1-16. [5] SKIBA A N. On some results in the theory of finite partially soluble groups[J]. Communications in Mathematics and Statistics, 2016, 4(3):281-309. [6] ZHANG Chi, XU Songnian, WU Zhenlin. Some notes on σ-soluble groups and σ-subnormality[J]. Communications in Algebra, 2023, 51(8):3266-3272. [7] AL-SHOMRANI M M, HELIEL A A, BALLESTER-BOLINCHES A. On σ-subnormal closure[J]. Communications in Algebra, 2020, 48(8):3624-3627. [8] 郭文彬. 群类论[M]. 北京:科学出版社,2000. GUO WenBin. The theory of classes of groups[M]. Beijing: Science Press, 2000. [9] 徐明耀.有限群引导[M]. 北京:科学出版社,1987. XU MingYao. An introduction to finite groups[M]. Beijing: Science Press, 1987. [10] HUPPERT B. Endliche gruppen I [M]. Berlin: Springer, 1967. |
[1] | 马小箭, 毛月梅. 子群的σ-嵌入系统对有限群结构的影响[J]. 《山东大学学报(理学版)》, 2022, 57(2): 67-71. |
|