• 论文 • 下一篇
郑洲顺,黄光辉*
ZHENG Zhou-shun, HUANG Guang-hui*
School of Mathematical Science and Computing Technology, Central South University, Changsha 410012, Hunan, China
摘要:
结合最速下降法计算量小和共轭方向法收敛速度快的特点,提出了一种求解病态方程组的共轭向量基的方法。线性方程组的精确解能够由共轭向量基线性表示,利用迭代的方式给出了构造共轭向量基以及对应系数的方法,证明了算法所构造的向量基的共轭性。同时给出了一个改进算法以适合不同精度要求,加快迭代的收敛速度。通过对5000阶的Hilbert方程组进行求解,结果的相对误差小于0.45%,并与当前普遍使用有效的方法进行了比较,数值实验结果表明,该算法适合求解大型病态线性方程组,且具有快速收敛,精度较高的特性。
中图分类号:
[1] | 代丽芳, 梁茂林, 何万生. 广义对称约束条件下矩阵表达式A-BXC 的极秩问题[J]. 山东大学学报(理学版), 2015, 50(02): 90-94. |
[2] | 陈 蓓 . 求解Toeplitz矩阵特征值反问题的不精确牛顿方法[J]. J4, 2008, 43(9): 89-93 . |
[3] | 曾宪雯,李安志 . 线性方程组并行行处理法贪心方法[J]. J4, 2008, 43(4): 73-75 . |
|