您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 •    下一篇

求解病态线性方程组的共轭向量基算法

郑洲顺,黄光辉*   

  1. 中南大学数学科学与计算技术学院, 湖南 长沙 410012
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 黄光辉

Conjugate vector base algorithm for solving ill-conditioned linear equations

ZHENG Zhou-shun, HUANG Guang-hui*   

  1. School of Mathematical Science and Computing Technology, Central South University, Changsha 410012, Hunan, China

  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: HUANG Guang-hui

摘要:

结合最速下降法计算量小和共轭方向法收敛速度快的特点,提出了一种求解病态方程组的共轭向量基的方法。线性方程组的精确解能够由共轭向量基线性表示,利用迭代的方式给出了构造共轭向量基以及对应系数的方法,证明了算法所构造的向量基的共轭性。同时给出了一个改进算法以适合不同精度要求,加快迭代的收敛速度。通过对5000阶的Hilbert方程进行求解,结果的相对误差小于0.45%,并与当前普遍使用有效的方法进行了比较,数值实验结果表明,该算法适合求解大型病态线性方程组,且具有快速收敛,精度较高的特性。

关键词: 共轭向量基, 共轭方向法, 最速下降法, 病态线性方程组

Abstract:

The characteristics of the steepest descent method’s small amount of computations and conjugate direction method’s fast convergence combined, a conjugate vector base method for solving ill-conditioned linear equations was proposed. The accurate solution of linear equations could be expressed linearly by the conjugate vector base, and the iterative strategy was used to construct the conjugate vector base groups and the corresponding coefficient. The constructed conjugate vector base groups were proved to be conjugated. Meanwhile, an improved algorithm fitting different required precisions was also given, which can accelerate the iterative convergence. 5000-order Hilbert ill-conditioned linear equations were solved, and the relative error was less than 0.45%. Numerical experiments verified that the method was efficient compared with the efficient methods used commonly nowadays. Numerical experiments results showed that the conjugate vector base method was suited for solving large-scale ill-conditioned linear equations with fast convergence and high precision.

Key words: conjugate direction method

, steepest descent method, ill-conditioned linear equations,

conjugate vector base

中图分类号: 

  • O241.6
[1] 代丽芳, 梁茂林, 何万生. 广义对称约束条件下矩阵表达式A-BXC 的极秩问题[J]. 山东大学学报(理学版), 2015, 50(02): 90-94.
[2] 陈 蓓 . 求解Toeplitz矩阵特征值反问题的不精确牛顿方法[J]. J4, 2008, 43(9): 89-93 .
[3] 曾宪雯,李安志 . 线性方程组并行行处理法贪心方法[J]. J4, 2008, 43(4): 73-75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!