您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (02): 90-94.doi: 10.6040/j.issn.1671-9352.0.2014.227

• 论文 • 上一篇    

广义对称约束条件下矩阵表达式A-BXC 的极秩问题

代丽芳, 梁茂林, 何万生   

  1. 天水师范学院数学与统计学院, 甘肃 天水 741001
  • 收稿日期:2014-05-16 修回日期:2014-10-15 出版日期:2015-02-20 发布日期:2015-01-27
  • 通讯作者: 梁茂林(1981-),男,硕士,讲师,研究方向为数值线性代数. E-mail:liangml2005@163.com E-mail:liangml2005@163.com
  • 作者简介:代丽芳(1981-),女,硕士,讲师,研究方向为非线性泛函分析. E-mail:dailf2005@163.com
  • 基金资助:
    甘肃省教育厅项目(1108B-03);天水师范学院青年基金项目(TSA1315)

The minimal and maximal ranks problems of matrix expression A-BXC under generalized symmetric constraints

DAI Li-fang, LIANG Mao-lin, HE Wan-sheng   

  1. School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001, Gansu, China
  • Received:2014-05-16 Revised:2014-10-15 Online:2015-02-20 Published:2015-01-27

摘要: 给定R,S为广义自反矩阵,即R*=R, R2=I, S*=S, S2=I,若矩阵X满足RXS=X(RXS=-X),则称之为广义反射矩阵(广义斜反射矩阵).当变量矩阵X为广义反射矩阵或广义斜反射矩阵时,讨论了矩阵表达式A-BXC的极秩问题,并得到了矩阵方程BXC=A的一些可解性条件.

关键词: 广义自反矩阵, 广义反射矩阵矩阵, 矩阵方程, 广义斜反射矩阵, 极大极小秩

Abstract: Let R,S be generalized reflection matrices, that is, R*=R, R2=I, S*=S, S2=I. A matrix X is called generalized reflective matrix (generalized skew-reflective matrix) if RXS=X(RXS=-X). The minimal and maximal ranks problems of matrix expression A-BXC with generalized reflective or skew-reflective matrices X are studied, and some solvability conditions of matrix equation BXC=A are derived.

Key words: generalized reflection matrices, generalized skew-reflective matrices, minimal and maximal ranks, matrix equations, generalized reflective matrices

中图分类号: 

  • O241.6
[1] CHEN H C. Generalized reflexive matrices: special properties and applications[J]. SIAM J Matrix Anal Appl, 1998, 19(1):140-153.
[2] 陈新. 机械结构动态设计理论方法及应用[M]. 北京:机械工业出版社,1997. CHEN Xin. The dynamic design of mechanical structure: theory, method and applications[M]. Beijing: Machinery Industry Press, 1997.
[3] DAI Hua. On the symmetric solutions of linear matrix equations[J]. Linear Algebra Appl, 1990, 131:1-7.
[4] CHU K E. Symmetric solutions of linear matrix equations by matrix decompositions[J]. Linear Algebra Appl, 1989, 119:35-50.
[5] GROB J. Nonnegative-definite and positive-definite solutions to the matrix equation AXB=C-revisited[J]. Linear Algebra Appl, 2000, 321:123-129.
[6] CHANG Xiaowen, WANG J. The symmetric solution of the matrix equations AY+YA=C, AXAT+BYBT=C and (ATXA, BTXB)=(C,D)[J]. Linear Algebra Appl, 1993, 179:171-189.
[7] XU Guiping, WEI Musheng, ZHENG Daosheng. On solution of matrix equation AXB+CYD=F[J]. Linear Algebra Appl, 1998, 279:93-109.
[8] WANG Guorong, WEI Yimin, QIAO Sanzheng. Generalized inverse: theory and computations[M]. Beijing: Science Press, 2004.
[9] 彭亚新. 求解约束矩阵方程及其最佳逼近的迭代法的研究[D].长沙:湖南大学,2004. PENG Yaxin. The research on the iterative methods for solving constrained matrix equations and the associated optimal approximation[D]. Changsha: Hunan University, 2004.
[10] DENG Yuanbei, BAI Zhongzhi, GAO Yonghua. Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations[J]. Numer. Linear Algebra Appl, 2006, 13:801-823.
[11] CHU K E. Singular value and generalized singular value decompositions and the solution of linear matrix equations[J]. Linear Algebra Appl, 1987, 88/89:83-98.
[12] TIAN Yongge. The maximal and minimal ranks of some expressions of generalized inverses of matrices[J]. Southeast Asian Bull Math, 2002, 25:745-755.
[13] TIAN Yongge. Upper and lower bounds for ranks of matrix expressions using generalized inverses[J]. Linear Algebra Appl, 2002, 355:187-214.
[14] TIAN Yongge. Some properties of submatrices in a solution to the matrix equation AXB=C with applications[J]. J Franklin Inst, 2009, 346:557-569.
[15] LIANG Maolin, DAI Lifang. The left and right inverse eigenvalue problems of generalized reflexive and anti-reflexive matrices[J]. J Comput Appl Math, 2010, 234:743-749.
[16] TIAN Yongge. The maximal and minimal ranks of A-BXC with applications[J]. New York J Math, 2003, 9:345-362.
[17] GUO Wenbin, HUANG Tingzhu. Extremal ranks of matrix expression of A-BXC with respect to Hermitian matrix[J]. Appl Math Comput, 2010, 217:2381-2389.
[18] WANG Hongxing. The minimal rank of A-BX with respect to Hermitian matrix[J]. Appl Math Comput, 2014, 233:55-61.
[1] 江静1,李宁2,王婷1. 一矩阵方程组可解条件的研究[J]. J4, 2013, 48(10): 47-50.
[2] 梁茂林,代丽芳,杨晓亚. 线性流形上行反对称矩阵反问题的最小二乘解及最佳逼近[J]. J4, 2012, 47(4): 121-126.
[3] 袁晖坪,李庆玉. 二次广义Hermite矩阵方程[J]. J4, 2012, 47(2): 74-77.
[4] 赵琳琳. 矩阵方程AXB+CXTD=E的可解性[J]. J4, 2012, 47(10): 45-48.
[5] 李磊. 矩阵方程X+A*XqA=I(0<q<1) Hermite 正定解的条件数[J]. J4, 2010, 45(12): 88-92.
[6] 程学汉,邹青. 实数域上矩阵函数方程的解[J]. J4, 2010, 45(11): 67-72.
[7] 赵琳琳1,陈果良1,赵建立2. 矩阵方程AXAT=B的对称反自反最小二乘解[J]. J4, 2010, 45(10): 1-3.
[8] 霍玉洪. 求解矩阵方程A1XB1+A2XTB2=E的一般解[J]. J4, 2009, 44(12): 44-47.
[9] 凌思涛 程学汉 魏木生. 一般线性四元数矩阵方程的Hermite解[J]. J4, 2008, 43(12): 1-4.
[10] 李 静,张玉海 . 矩阵方程X+A*X-pA=I当p>0时的准最大解的条件数[J]. J4, 2007, 42(12): 90-94 .
[11] 李静,张玉海,宋慧敏 . 矩阵方程X+A*X-pA=I(0<p<1)的最大解的条件数[J]. J4, 2006, 41(5): 68-72 .
[12] 李磊,张玉海 . 矩阵方程X+A*XqA=I(q>0)的Hermite正定解[J]. J4, 2006, 41(4): 32-39 .
[13] 高东杰,张玉海 . 矩阵方程X-A*XqA=I(q>0)的Hermite正定解[J]. J4, 2006, 41(1): 97-105 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!