您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

知识的属性依赖挖掘与识别

刘若慧1,鄢川江2,3,史开泉2   

  1. 1. 黄淮学院计算机科学系, 河南 驻马店 463000; 2. 山东大学数学与系统科学学院, 山东 济南 250100; 3. 黄淮学院数学系, 河南 驻马店 463000
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 刘若慧

Attribute dependence mining and recognition of knowledge

LIU Ruo-hui1, YAN Chuan-jiang2,3, SHI Kai-quan2   

  1. 1. Department of Computer Science, Huanghuai University, Zhumadian 463000, Henan, China;2. School of Mathematics and System Sciences, Shandong University, Jinan 250100, Shandong, China;
    3. Department of Mathematics Sciences, Huanghuai University, Zhumadian 463000, Henan, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: LIU Ruo-hui

摘要: 利用属性集α内被补充属性,知识[x]内的元素个数被减少;利用属性集α内的部分属性被删除, 知识[x]内的元素个数被增加的两个特性。给出阶梯知识,阶梯知识生成,知识属性依赖的概念,提出知识的属性依赖挖掘定理,知识的属性依赖挖掘-状态识别准则,给出知识的属性依赖挖掘的应用。

关键词: 阶梯知识, 挖掘定理, 单位圆定理, 依赖挖掘, 属性依赖

Abstract: If there are new attributes supplemented to α, then the elements in [x] will decrease; if some attributes in α were deleted, then the elements in [x]will increase. By using the above two characteristics, the concepts of ladder knowledge, the generation of ladder knowledge and the attribute dependence of knowledge were presented, the attribute dependence mining theorem of knowledge and the attribute dependence mining-state recognition criterion of knowledge were proposed, and the applications of attribute dependence mining of knowledge were also given.

Key words: mining theorem, unit circle theorem, dependence mining, attribute dependence, ladder knowledge

中图分类号: 

  • O159
[1] 任雪芳,张凌. 逆P-集合的扰动定理与数据的扰动挖掘[J]. 山东大学学报(理学版), 2016, 51(12): 54-60.
[2] 张曰云. 随机函数逆P-集合与其属性依赖特征[J]. 山东大学学报(理学版), 2014, 49(10): 90-94.
[3] 赵文菊1, 范成贤2*. 函数P-集合属性依赖与应用[J]. J4, 2011, 46(6): 115-120.
[4] 付海艳,史开泉 . 知识过滤与属性f-迁移依赖[J]. J4, 2007, 42(10): 54-58 .
[5] 崔明辉,史开泉 . S-粗集与它的知识遗传挖掘[J]. J4, 2006, 41(6): 76-80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!