您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

一类Fullerene图的1-共振性

祁忠斌1,2,张和平1   

  1. 1. 兰州大学数学与统计学院, 甘肃 兰州730000; 2. 兰州工业高等专科学校基础学科部, 甘肃 兰州 730050
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 祁忠斌

1-resonance of a class of Fullerene graphs

QI Zhong-bin1,2,ZHANG He-ping1   

  1. 1. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, Gansu, China;2. Basic Courses Department, Lanzhou Polytechnic College, Lanzhou 730050, Gansu, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: QI Zhong-bin

摘要: 用R(0)表示一个含有1个六边形内面和6个五边形内面的平面图,其中这6个五边形内面同时和该六边形内面相邻,且这6个五边形内面构成一个环链。给出了含有R(0)作为子图的Fullerene图的构造和分类;进一步证明了含有R(0)作为子图的Fullerene图是1-共振图。

关键词: 化学图论, 1-共振图 , 2-可扩性, 共振圈(环), 闭环链, Fullerene 图

Abstract: A plane graph with 1 hexagonal inner face and 6 pentagonal inner faces was denoted by R(0), where these pentagonal faces can form a ring chain, and are adjacent to the hexagonal face. The construction and a classification of the Fullerene graphs containing R(0) were given. Further, it was proved that every Fullerene graph with R(0) as its subgraph is 1-resonant.

Key words: 1-resonant graphs , 2-extendability, resonant cycles(rings), closed ring chain, Fullerene graphs, chemistry graph theory

中图分类号: 

  • O157.6
[1] 祁忠斌1,叶东2,张和平2. 正则图的环边连通性和环连通性之间的关系[J]. J4, 2009, 44(12): 22-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!