您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

线性方程组并行行处理法贪心方法

曾宪雯1,李安志2   

  1. 1. 中国工程物理研究院研究生部, 四川 绵阳 621900; 2. 中国工程物理研究院工学院, 四川 绵阳 621900
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 曾宪雯

The parallel row action method with the greedy method for the system of linear equations

ZENG Xian-wen1, LI An-zhi2   

  1. 1. Graduate Department, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China;2. Institute of Technology, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: ZENG Xian-wen

摘要: 利用格拉姆-施密特(Gram-Schmidt)正交化方法、行处理法贪心方法和分治策略给出一种求解任意线性代数方程组的并行数值方法,证明该方法对任意的相容性线性代数方程组收敛,分析其计算复杂度和数值稳定性,探讨其在线性代数方程组消息传递并行算法研究中的应用前景。

关键词: 线性代数方程组, 消息传递并行算法 , 分治策略, 行处理法贪心方法, 正交规范化

Abstract: The Gram-Schmidt’s orthogonalization, row action method with the greedy method and dividing-conquering strategy were used to put forth a parallel numerical method of solving an arbitrary system of linear algebraic equations. It was proved that this method is convergent to the arbitrary consistent system of linear algebraic equations. Its computational complexity and numerical stability were analyzed, and its application prospects in the study of a message passing parallel algorithm for a system of linear algebraic equations were discussed.

Key words: message passing parallel algorithm , dividing-conquering strategy, row action method with greedy method, orthogonalization, system of linear algebraic equations

中图分类号: 

  • O246
[1] 陈一鸣,解加全,苑润浩,郝晓光. Block Pulse函数法求解非线性Volterra-Fredholm-Hammerstein积分方程[J]. J4, 2013, 48(10): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!