您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (08): 33-39.doi: 10.6040/j.issn.1671-9352.1.2014.115

• 论文 • 上一篇    下一篇

不协调决策表的不协调度

姚晓林, 米据生, 凌密然   

  1. 河北师范大学数学与信息科学学院, 河北 石家庄 050024
  • 收稿日期:2014-06-02 修回日期:2014-07-08 发布日期:2014-09-24
  • 通讯作者: 米据生(1966-),男,教授,研究方向为粗糙集与概念格、人工智能等.E-mail:mijsh@263.net E-mail:mijsh@263.net
  • 作者简介:姚晓林(1988-),女,硕士研究生,研究方向为人工智能的数学基础.E-mail:yaoxiaolin1230@163.com
  • 基金资助:
    国家自然科学基金资助项目(61170107,61300121,61300153);河北省高校创新团队领军人才培育计划项目(LJRC022)

The inconsistent degree of an inconsistent decision table

YAO Xiao-lin, MI Ju-sheng, LING Mi-ran   

  1. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China
  • Received:2014-06-02 Revised:2014-07-08 Published:2014-09-24

摘要: 针对不协调决策信息系统中的不协调决策规则,定义了不协调决策规则对。对于属性或对象较多的不协调决策表,用辨识矩阵提取不协调决策规则对较为繁琐。首先利用包含度筛选含有不协调决策规则对的等价类,然后由辨识矩阵提取不协调决策规则对,并计算其数目。也可以根据广义决策分布函数的分量直接计算不协调决策规则对的数目。进而计算出不协调决策表的不协调度。最后研究约简前后不协调决策表的不协调度之间的关系。

关键词: 包含度, 广义决策分布函数, 不协调决策表, 决策规则, 辨识矩阵

Abstract: The definition of inconsistent decision rule pairs is proposed in an inconsistent decision information system with inconsistent decision rules. It is relatively complicated by using discernibility matrix to extract inconsistent decision rule pairs from inconsistent decision table with many objects or attributes. Inclusion degree is used to screen the equivalence classes which can produce inconsistent decision rule pairs, then discernibility matrix is employed to extract inconsistent decision rule pairs, thus calculating the number. The number can be also calculated by the component of generalized decision function directly. And then the inconsistent degree of an inconsistent decision table is computed. Finally, the relationship of inconsistent degree between original inconsistent decision table and reduced inconsistent decision table is studied.

Key words: inconsistent decision table, discernibility matrix, generalized decision function, decision rule, inclusion degree

中图分类号: 

  • O236
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356.
[2] KRYSZKIEWICZ M. Rules in incomplete information systems[J]. Information Science, 1999, 112:39-49.
[3] 安芹力, 李安平. 不协调决策表的属性约简模型及规则提取[J]. 空军工程大学学报:自然科学版,2005,6(3):88-91. AN Qinli, LI Anping. Attribute reduction models of inconsistent decision table and rule extraction[J]. Journal of Air Force Engineering University: Natural Science Edition, 2005, 6(3):88-91.
[4] KRYSZKIEWICZ M. Comparative Studies of alternative type of knowledge reduction in inconsistent systems[J]. International Journal of Intelligent Systems, 2001, 16(1):105-120.
[5] 管延勇. 粗糙集与信息系统约简--决策规则优化[D]. 济南:山东大学,2006. GUAN Yanyong. Rough sets and attribute reduction in information systems--decision rules optimization[D]. Jinan: Shandong University, 2006.
[6] 张士林, 毛海军, 邵龙潭. 粗糙集不协调率的研究[J]. 计算机工程与应用,2003,18:49-50. ZHANG Shilin, MAO Haijun, SHAO Longtan. The research on non-correspond ratio of rough sets[J]. Computer Engineering and Application, 2003, 18:49-50.
[7] 陈吕强, 伏明兰, 朱颢东. 不协调决策表协调化的一种方[J]. 黄山学院学报,2011,13(3):17-19. CHEN Lvqiang, FU Minglan, ZHU Haodong. method of making inconsistent decision table consistent[J]. Journal of Huang-shan University, 2011, 13(3):17-19.
[8] KRYSZKIEWICZ M. Certain generalized decision, and membership distribution reducts versus functional dependencies in incomplete systems[J]. Proceedings of Rough Sets and Intelligent Systems Paradigms, 2007: 162-174.
[9] 张文修, 米据生, 吴伟志. 不协调目标信息系统的属性约简[J]. 计算机学报,2003,26(1):12-18. ZHANG Wenxiu, MI Jusheng, WU Weizhi. Knowledge reductions in inconsistent information systems[J]. Chinese Journal of Computers, 2003, 26(1):12-18.
[10] ZHANG Wenxiu, MI Jusheng, WU Weizhi. Approaches to knowledge reductions in inconsistent systems[J]. International Journal of Intelligent Systems, 2003, 18:989-1000.
[11] LI Min, SHANG Changxing, FENG Shengzhong, et al. Quick attribute reduction in inconsistent decision tables[J]. Information Sciences, 2014, 254:155-180.
[12] QIAN Yuhua, LIANG Jiye, LI Deyu, et al. Approximation reduction in inconsistent incomplete decision tables[J]. Knowledge-Based Systems, 2010, 23:427-433.
[13] MENG Zuqiang, SHI Zhongzhi. Extended rough set-based attribute reduction in inconsistent incomplete decision systems[J]. Information Sciences, 2012, 204:44-69.
[14] XU Weihua, LI Yuan, LIAO Xiuwu. Approaches to attribute reductions based on rough set and matrix computation in inconsistent ordered information systems[J]. Knowledge-Based Systems, 2012, 27:78-91.
[15] 张文修, 徐宗本, 梁怡,等. 包含度理论[J]. 模糊系统和数学,1996,10(4):1-9. ZHANG Wenxiu, XU Zongben, LIANG Yi, et al. Inclusion degree theory[J]. Fuzzy Systems and Mathematics,1996, 10(4):1-9.
[1] 邱婷婷, 李克典. 不协调目标信息系统中基于对象子集的μ-约简[J]. 山东大学学报(理学版), 2015, 50(05): 35-39.
[2] 许晴媛 李进金 张燕兰. 覆盖决策信息系统的约简[J]. J4, 2010, 45(1): 89-93.
[3] 胡明礼,刘思峰 . 不完全信息下概率决策的扩展粗糙集方法[J]. J4, 2006, 41(6): 93-98 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!