您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

基于粗糙集理论和BP神经网络的文本自动分类方法研究

白如江,王效岳   

  1. 山东理工大学图书馆, 山东淄博255049
  • 收稿日期:2006-03-29 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 白如江

AA hybrid classifier based on the rough sets and BPneural networks

BAI Ru-jiang,WANG Xiao-yue   

  1. The Library of Shandong University of Technology, Zibo 255049, Shandong, China
  • Received:2006-03-29 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: BAI Ru-jiang

摘要: 结合粗糙集的属性约简和神经网络的分类机理,提出了一种混合算法. 首先应用粗糙集理论的属性约简作为预处理器,把冗余的属性从决策表中删去,然后运用神经网络进行分类. 这样可以大大降低向量维数,克服粗糙集对于决策表噪声比较敏感的缺点. 试验结果表明,与朴素贝叶斯、SVM、kNN传统分类方法相比,该方法在保持分类精度的基础上,分类速度有明显的提高,体现出较好的稳定性和容错性,尤其适用于特征向量多且难以分类的文本.

关键词: 文本分类, 粗糙集, VSM , 属性约简, 神经网络

Abstract: Abstract: A hybrid classifier is presented based on the combination of rough set theory and BP neural network. Firstly, the documents are denoted by vector space model. Secondly it reduced the feature vector by using rough sets. Finally classed the documents by BP neural network. Experimental results show that the algorithm RoughANN is effective for the texts classification, and has the better performance in classification precision, stability and faulttolerance when compared with the traditional classification methods, Bayesian classifiers SVM and kNN, especially for the complex classification problems with many feature vectors.

Key words: VSM , attribute reduction, neural network, roughsets, text classification

[1] 肖炜茗,王贵君. 基于Bernstein多项式的SISO三层前向神经网络的设计与逼近[J]. 山东大学学报(理学版), 2018, 53(9): 55-61.
[2] 李同军,黄家文,吴伟志. 基于相似关系的不完备形式背景属性约简[J]. 山东大学学报(理学版), 2018, 53(8): 9-16.
[3] 左芝翠,张贤勇,莫智文,冯林. 基于决策分类的分块差别矩阵及其求核算法[J]. 山东大学学报(理学版), 2018, 53(8): 25-33.
[4] 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24.
[5] 张芳芳,曹兴超. 基于字面和语义相关性匹配的智能篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 46-53.
[6] 刘明明,张敏情,刘佳,高培贤. 一种基于浅层卷积神经网络的隐写分析方法[J]. 山东大学学报(理学版), 2018, 53(3): 63-70.
[7] 李丽,管涛,林和. 基于泛系算子的泛系混合并联粗糙集模型[J]. 山东大学学报(理学版), 2017, 52(7): 22-29.
[8] 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36.
[9] 秦静,林鸿飞,徐博. 基于示例语义的音乐检索模型[J]. 山东大学学报(理学版), 2017, 52(6): 40-48.
[10] 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104.
[11] 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103.
[12] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
[13] 万中英,王明文,左家莉,万剑怡. 结合全局和局部信息的特征选择算法[J]. 山东大学学报(理学版), 2016, 51(5): 87-93.
[14] 王长弘,王林山. 基于忆阻器的S-分布时滞随机神经网络的均方指数稳定性[J]. 山东大学学报(理学版), 2016, 51(5): 130-135.
[15] 马成龙, 姜亚松, 李艳玲, 张艳, 颜永红. 基于词矢量相似度的短文本分类[J]. 山东大学学报(理学版), 2014, 49(12): 18-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!