JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (04): 67-70.doi: 10.6040/j.issn.1671-9352.0.2014.310
Previous Articles Next Articles
ZHANG Wan-ru, GUO Jin-sheng
CLC Number:
[1] REGE M B, CHHAWCHHARIA S. Armendariz rings[J]. Proc Japan Acad: Ser A, 1997, 73(1):14-17. [2] ANDERSON D D, CAMILLO V. Armendariz rings and Gaussian rings[J]. Comm Algebra, 1998, 26(7):2265-2272. [3] LEE T K, ZHOU Y. Armendariz and reduced rings[J]. Comm Algebra, 2004, 32(6):2287-2299. [4] KWAK T K, LEE Y, YUN S J. The Armendariz property on ideals[J]. J Algebra, 2012, 354:121-135. [5] ANTOINE R. Examples of Armendariz rings[J]. Comm Algebra, 2002, 38(11):4130-4143. [6] NASR-ISFAHANI A R. Radicals of skew polynomial and skew laurent polynomial rings over skew Armendariz rings[J]. Comm Algebra, 2014, 42(3):1337-1349. [7] HIRANO Y. On annihilator ideals of a polynomial ring over a noncommutative ring[J]. J Pure Appl Algebra, 2002, 168:45-52. [8] HASHEMI E. Quasi-Armendariz rings relative to a monoid[J]. J Pure Appl Algebra, 2007, 211:374-382. [9] BASER M, KAYNARCA F, KWAK T K, et al. Weak quasi-Armendariz rings[J]. Algebra Colloq, 2011, 18(4):541-552. [10] ANNIN S. Associated primes over skew polynomial rings[J]. Comm Algebra, 2002, 30(5):2511-2528. [11] LIU Zhongkui, QIAO Husheng. Generalized pp and zip subrings of matrix rings[J]. Communications in Mathematical Research, 2010, 26(3):193-202. |
[1] | ZHANG Dong-qing, YIN Xiao-bin, GAO Han-peng. Quasi-linearly Armendariz modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 1-6. |
[2] | MA Jing, GUO Ying, SUN Cheng-xia. An example of semicommutative Armendariz ring [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 1-6. |
|