JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (04): 36-41.doi: 10.6040/j.issn.1671-9352.0.2014.482
Previous Articles Next Articles
SHEN Chong, YAO Wei
CLC Number:
[1] SCHMIDT J. Beitraezur filter theorie[J]. II, Mathematische Nachrichten, 1953, 10(1):197-232. [2] ORE O. Galois connexions[J]. Transactions of the American Mathematical Society, 1944, 55(0):493-513. [3] SHMUELY Z. The structure of Galois connections[J]. Pacific J Math, 1974, 54(2):209-225. [4] PICADO J. The quantale of Galois connections[J]. Algebra Universalis, 2004, 52(4):527-540. [5] YAO Wei, LU Lingxia. Fuzzy Galois connections on fuzzy posets[J]. Mathematical Logic Quarterly, 2009, 55(1):105-112. [6] ROSENTHAL K I. Quantales and their applications[M]. New York: Addison Wesley Longman, 1990. [7] LAI Hongliang, ZHANG Dexue. Complete and directed complete Ω-categories[J]. Theoretical Computer Science, 2007, 388(1-3):1-25. [8] BELOHLAVEK R. Fuzzy relation systems: foundations and principles[M]. New York: Kluwer Academic Publishers, 2002. [9] GOGUEN J A. L-fuzzy sets[J]. Journal of Mathematical Analysis and Applications, 1967, 18(1):145-174. [10] ZHANG Qiye, FAN Lei. Continuity in quantitative domains[J]. Fuzzy Sets and Systems, 2005, 154(1):118-131. [11] ZHANG Qiye, XIE Weixian. Section-retraction-pairs between fuzzy domains[J]. Fuzzy Sets and Systems, 2007, 158(1):99-114. [12] BELOHLAVEK R. Concept lattices and order in fuzzy logic[J]. Annals of Pure and Applied Logic, 2004, 128(1-3):227-298. [13] ZHANG Dexue. An enriched category approach to many valued topology[J]. Fuzzy Sets and Systems, 2007, 158(4):1-25. |
[1] | ZHOU Yi-hui1, MA Jue2. The products and coproducts in the category of fuzzy complete lattices [J]. J4, 2012, 47(8): 122-126. |
|