JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (09): 84-87.doi: 10.6040/j.issn.1671-9352.0.2014.495

Previous Articles     Next Articles

Inequalities for Casorati curvatures of submanifolds in a riemannian manifold of quasi-constant curvature

PAN Xu-lin, ZHANG Pan, ZHANG Liang   

  1. School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, Anhui, China
  • Received:2014-11-07 Revised:2015-03-03 Online:2015-09-20 Published:2015-09-26

Abstract: By using the optimization methods on submanifolds, we obtain the inequalities of Casorati curvatures for submanifolds of a Riemanifold manifold of quasi-constant curvature, which generalize the known results.

Key words: inequalities, Casorati curvatures, riemannian manifold of quasi-constant curvature

CLC Number: 

  • O186
[1] CHEN Bangyen. Mean curvature and shape operator of isometric immersions in real-space-forms[J]. Glasgow Mathematical Journal, 1996, 38(01):87-97.
[2] LI Guanghan, WU Chuanxi. Slant immersions of complex space forms and Chen's inequality[J]. Acta Mathematica Scientia, 2005, 25B(2):223-232.
[3] LI Xingxiao, HUANG Guangyue, XU Jianlou. Some inequalities for submanifolds in locally conformal almost cosymplectic manifolds[J]. Soochow Journal of Mathematics, 2005, 31(3):309-319.
[4] LIU Ximin, DAI Wanji. Ricci curvature of submanifolds in a quaternion projective space[J]. Commun Korean Math Soc, 2002, 17(4):625-634.
[5] OPERA T. Chen's inequality in lagrangian case[J]. Colloq Math, 2007, 108(1):163-169.
[6] DECU S, HAESEN S, VERSTRAELEN L. Optimal inequalities involving Casorati curvatures[J]. Bull Transylv Univ Brasov, Ser B, 2007, 14(49):85-93.
[7] DECU S, HAESEN S, VERSTRAELEN L. Optimal inequalities characterising quasi-umbilical submanifolds[J]. J Inequal Pure Appl Math, 2008, 9(3):79.
[8] SLESAR V, SAHIN B, VÎLCU G E. Inequalities for the Casorati curvatures of slant submanifolds in quaternionic space forms[J]. Journal of Inequalities and Applications, 2014, 2014(1):123.
[9] LEE J W, VÎLCU G E. Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in quaternionic space forms[EB/OL]. [2014-11-07]arXiv preprint arXiv:1405.5192, 2014. http://arxiv.org/abs/1405.5192.
[10] LEE C W, YOON D W, LEE J W. Optimal inequalities for the Casorati curvatures of submanifolds of real space forms endowed with semi-symmetric metric connections[J]. Journal of Inequalities and Applications, 2014, 2014(1):327.
[11] ZHANG Pan, ZHANG Liang, SONG Weidong. Chen's inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection[J]. Taiwanese Journal of Mathematics, 2014, 18(6):1827-1839.
[12] ZHANG Pan. Inequalities for Casorati curvatures of submanifolds in real space forms[EB/OL]. [2014-11-07]arXiv preprint arXiv:1408.4996, 2014. http://arxiv.org/abs/1408.4996.
[13] CASORATI F. Mesure de la courbure des surfaces suivant l'idée commune[J]. Acta mathematica, 1890, 14(1):95-110.
[14] CHEN Bangyen, YANO K. Hypersurfaces of a conformally flat space[J]. Tensor NS, 1972, 26:318-322.
[1] YANG Yan-tao. Modified subgradient extragradient method for solving monotone variational inequality problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 38-45.
[2] CHEN Xia, CHEN Chun-rong. Gap functions and error bounds for generalized vector variational inequalities [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 1-5.
[3] LIU Xu-dong, PAN Xu-lin, ZHANG Liang. Inequalities for Casorati curvatures of submanifolds in a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 55-59.
[4] HE Guo-qing, ZHANG Liang, LIU Hai-rong. Chen-Ricci inequalities for submanifolds of generalized Sasakian space forms with a semi-symmetric metric connection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 56-63.
[5] TAN Chuang, GUO Ming-le, ZHU Dong-jin. Complete moment convergence of weighted sums of arrays of rowwise ND random variables [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 27-32.
[6] ZHANG Pan, ZHANG Liang, SONG Wei-dong. Geometric inequalities for spacelike submanifolds of a #br# semi-Riemannian space form [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 91-94.
[7] ZHANG Hong-xia1, KONG Xiang-zhi2. Some new integral inequalities in two independent  variables and their applications [J]. J4, 2011, 46(8): 52-58.
[8] LIU Long1, LI Ming2, YU Li-yang3. Novel criterion of exponential stability for a generic linear rational expectations model of economy [J]. J4, 2011, 46(7): 78-82.
[9] HAN Zong-xian, SUN Wei-bin. Equivalent theorem of weighted approximation for a kind of generalized Bernstein-Kantorovich operators in Bα spaces [J]. J4, 2011, 46(4): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!