JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (08): 40-45.doi: 10.6040/j.issn.1671-9352.0.2015.051

Previous Articles     Next Articles

Soft filters of pseudo-BL algebras related to fuzzy set theory

PENG Jia-yin   

  1. School of Mathemayics and Information Science, Neijiang Normal University, Neijiang 641100, Sichuan, China
  • Received:2015-02-02 Online:2015-08-20 Published:2015-07-31

Abstract: The notions of ∈-soft set and q-soft set based on a fuzzy set are introduced, and characterizations for an ∈-soft set and a q-soft set to be soft (implicative) filters of a pseudo-BL algebra are given. Using the notion of (∈,∈∨q)-fuzzy (implicative) filters of pseudo-BL algebras, characterizations for an ∈-soft set to be soft (implicative) filters are established.

Key words: pseudo-BL algebra, soft set, q-soft set, soft (implicative) filter, (∈,∈∨q)-fuzzy (implicative) filter, fuzzy set, ∈-soft set

CLC Number: 

  • O159
[1] ZADEH L A. From circuit theory to system theory[J]. Proceedings of the IRE, 1962, 50(5):856-865.
[2] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[3] ATANASSOV K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[4] GAU W L, BUEHRER D J. Vague sets[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(2):610-614.
[5] GORZALZANY M B. A method of inference in approximate reasoning based on interval-valued fuzzy sets[J]. Fuzzy Sets and Systems, 1987, 21(1):1-17.
[6] PAWLAK Z. Rough sets[J]. International Journal of Information & Computer Sciences, 1982, 11(5):341-356.
[7] MOLODTSOV D. Soft set theory-First results[J]. Computers & Mathematics with Applications, 1999, 37(4/5):19-31.
[8] MAJI P K, BISWAS R, ROY A R. Soft set theory[J]. Computers & Mathematics with Applications, 2003, 45(4/5):555-562.
[9] MAJI P K, ROY A R, BISWAS R. An application of soft sets in a decision making problem[J]. Computers & Mathematics with Applications, 2002, 44 (8/9):1077-1083.
[10] CHEN D, TSANG E C C, YEUNG D S, et al. The parameterization reduction of soft sets and its applications[J]. Computers & Mathematics with Applications, 2005, 49(5/6):757-763.
[11] JUN Young bae, XIN Xiaolong. Fuzzy prime ideals and invertible fuzzy ideals in BCK-algebras[J]. Fuzzy Sets and Systems, 2001, 117(3): 471-476.
[12] ZHAN Jianming, JUN Young bae, DUDEK Wieslaw A. On (∈,∈∨q)-fuzzy filters of pseudo-BL algebras[J]. Bulletim of the Malaysian Mathematical Sciences Society: Second Series, 2010, 33 (1): 57-67.
[13] XU Wei, MA Jian, WANG Shouyang, et al. Vague soft sets and their properties[J]. Computers & Mathematics with Applications, 2010, 59(2):787-794.
[1] YU Xiao-dan, DONG Li, WU Cong, KONG Xiang-zhi. Soft incidence ring [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 31-35.
[2] HU Qian, MI Ju-sheng, LI Lei-jun. The fuzzy belief structure and attribute reduction based on multi-granulation fuzzy rough operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 30-36.
[3] SHI Su-wei, LI Jin-jin, TAN An-hui. Fuzzy roughness and rough entropy of covering based generalized rough intuitionistic fuzzy set model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 86-91.
[4] ZHAI Jun-hai, ZHANG Yao, WANG Xi-zhao. Tolerance rough fuzzy set model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 73-79.
[5] ZHANG Hai-dong1, HE Yan-ping 2. Generalized interval-valued fuzzy rough sets and axiomatic characterizations [J]. J4, 2013, 48(09): 56-63.
[6] WANG Zhong-xing, TANG Zhi-lan, NIU Li-li. Multi-criteria fuzzy decision-making method with interval-valued intuitionistic fuzzy sets based on relative superiority [J]. J4, 2012, 47(9): 92-97.
[7] LI Xiao-ping1, SUN Gang2. Intuitionistic fuzzy fully invariant subgroups and  characteristic subgroups [J]. J4, 2012, 47(2): 119-122.
[8] LIU Chun-hui1,2. Filteristic soft FI-algebras [J]. J4, 2012, 47(11): 94-98.
[9] YAN Li-mei. Union-separation of an internal P-fuzzy set and its attribute characteristics [J]. J4, 2012, 47(1): 104-109.
[10] LU Xiao-yun1, YANG Yong 2. A one-direction S-fuzzy rough set and its application [J]. J4, 2011, 46(8): 110-113.
[11] ZHANG Sheng-li1, PAN Zheng-hua2. An improved  set description of negative knowledge processing in Fuzzy knowledge [J]. J4, 2011, 46(5): 103-109.
[12] LIU Bao-cang1, LIU Ruo-hui2*. Characters of embedded sets of rough both-branch fuzzy sets [J]. J4, 2010, 45(11): 79-82.
[13] . [J]. J4, 2009, 44(3): 74-77 .
[14] LI Lian-Jiang, JIN Qiu. An equivalent characterization of Ω-filter [J]. J4, 2009, 44(10): 51-53.
[15] LIU Ji-qin,PEI Hai-feng . A two-direction S-rough fuzzy set and its application [J]. J4, 2008, 43(2): 19-22 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!