JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (1): 27-35.doi: 10.6040/j.issn.1671-9352.0.2015.073

Previous Articles     Next Articles

Influences of phenolic acids on soil nitrification in poplar plantation

YI Wen-hui, WANG Yan-ping, WANG Hua-tian*, MA Xue-song, WANG Wen-bo   

  1. Forest College of Shandong Agricultural University, Shandong Key Laboratory of Silviculture in Shandong Provincial, Taian 271018, Shandong, China
  • Received:2015-02-27 Online:2016-01-16 Published:2016-11-29

Abstract: Take the non-rhizosphere soils of the first generation stands in poplar plantation as test material by the method of appalling NH4-N into soil samples with gradient concentration of exogenous phenolic acids, and cultured in a period of time in laboratory. The influences of different concentration phenolic acids to NO3-N and NH4-N in nitrification process was analyzed. Dynamic equations of NO3-N and NH4-N in nitrification process was used to elucidate the influence to soil nitrogen cycle. Results show that as the concentration of phenolic acids increased, accumulate asymptotic values of NO3-N and consume asymptotic values of NH4-N both decreased gradually, maximum accumulating speeds of NO3-N decreased gradually, maximum consuming speeds of NH4-N has no significant differences, the time to reach maximum accumulating and consuming speeds of NO3-N and NH4-N was both postponed, the increase amplitude of soil pH was enhanced and the recovery rate of nitrification decreased gradually, the inhibition to nitrification ability was strengthen.

Key words: phenolic acids, nitrification, poplar plantation, allelopathy

CLC Number: 

  • S714
[1] 孔令刚, 刘福德, 王华田, 等. 施肥对I-107杨树人工林土壤根际效应的影响[J]. 中国水土保持科学, 2006, 20(4):60-65. KONG Linggang, LIU Fude, WANG Huatian, et al. Effect of fertilization on soil microflora and enzyme rhizosphere effect in poplar forestland[J]. Science of Soil and Water Conservation, 2006, 20(4):60-65.
[2] 孙翠玲, 朱占学, 王珍, 等. 杨树人工林地力退化及维护与提高土壤肥力技术的研究[J]. 林业科学, 1995, 31(6):506-512. SUN Cuiling, ZHU Zhanxue, WANG Zhen, et al. Study on the soil degradation of the poplar plantation and the technique to preserve and increase soil fertility[J]. Scientla Silvae Sinicae, 1995, 31(6):506-512.
[3] 刘福德, 姜岳忠, 王华田, 等. 杨树人工林连作效应的研究[J]. 水土保持学报, 2005, 19(2):102-105. LIU Fude, JIANG Yuezhong, WANG Huatian, et al. Effect of Continuous Cropping on Poplar Plantation[J]. Science of Soil and Water Conservation, 2005, 19(2):102-105.
[4] ZENG R S, MALLIK A U, LUO S M. Allelopathy in sustainable agriculture and forestry[M]. Berlin: Springer press, 2008.
[5] KONG C H, CHEN L C, XU X H, et al. Allelochemicals and activities in a replanted Chinese fir (Cunninghamia lanceolata(Lamb.)Hook.)tree ecosystem[J]. Journal of Agricultural and Food Chemistry, 2008, 56(24):11734-11739.
[6] KONG C H, WANG P, ZHAO H, et al. Impact of allelochemical exuded from allelopathic rice on soil microbial community[J]. Soil Biology and Biochemistry, 2008, 40(7):1862-1869.
[7] 王延平, 王华田. 连作人工林化感效应研究综述[J]. 世界林业研究, 2008, 4(4):25-30. WANG Yanping, WANG Huatian. Research advances on allelopathy of continuous cropping plantation[J]. World Forestry Research, 2008, 4(4):25-30.
[8] BIRKETT M A, CHAMBERLAIN K, HOOPER A M, et al. Does allelopathy offer real promise for practical weed management and for explaining rhizosphere interactions involving higher plants?[J] Plant and Soil, 2001, 232:31-39.
[9] INDERJIT K M. Plant phenolics in allelopathy[J]. The Botanical Review, 1996, 62(2):186-202.
[10] TSUTOMU O. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity[J]. Journal of Environmental Quality, 2001, 30(5):1631-1635.
[11] 张国桢. 石灰性土壤硝化作用模型的研究[D]. 杨凌:西北农林科技大学, 2007. ZHANG Guozhen. Studing on the nitrification kinetic models in the calcareous soil[D]. Yangling: Northwest A&F University, 2007.
[12] SABEY B R, FREDERICK L R, BARTHOLOMEW W V. The formation of nitrate from ammonium nitrogen in soils: iv. use of the delay and maximum rate phases for making quantitative predictions[J]. Soil Science Society of America Journal, 1969, 33(2):276-278.
[13] SABEY B R, FREDERICK L R, BARTHOLOMEW W V. The formation of nitrate from ammonium nitrogen in soils: iii influence of temperature and initial population of nitrifying organisms on the maximum rate and delay period[J]. Soil Science Society of America Journal, 1959, 23(6):462-465.
[14] 张树兰, 杨学云, 吕殿青, 等. 几种土壤剖面的硝化作用及其动力学特征[J]. 土壤学报, 2000,37(3):372-379. ZHANG Shulan, YANG Xueyun, LÜ Dianqing, et al. Nitrification and dynamics in profiles of differently managed soil types[J]. Acta Pedologica Sinica, 2000, 37(3):372-379.
[15] 张国桢, 李世清. 三种氨态氮肥在石灰性土壤中硝化作用的模拟研究[J]. 干旱地区农业研究, 2007,25(6):183-188. ZHANG Guozhen, LI Shiqing. Effects of the conservation tillage on the physicochemical characteristics ofsoil surface in the semi-arid areas of the Loess plateau[J]. Agricultural Research in the Arid Areas, 2007, 25(6):183-188.
[16] 贺纪正, 张丽梅. 氨氧化微生物生态学与氮循环研究进展[J]. 生态学报, 2009, 29(1):410-419. HE Jizheng, ZHANG Limei. Advances in ammonia-oxidizing microorganism sand global nitrogen cycle[J]. Acta Ecologica Sinica, 2009, 29(1):410-419.
[17] CASTELLS E, JOSEP P J, VALENTINE D W. Influence of the phenolic compound bearing species Ledum palustre on soil N cycling in a boreal hardwood forest[J]. Plant Soil, 2003, 251:155-166.
[18] SIMONA C, ANNA C, ANTONIO F, et al. Inhibition of net nitrification activity in Mediterranean woodland: possible role of chemicals produced by Arbutus unedo[J]. Plant Soil, 2009, 315(1):273-283.
[19] 朱丽霞, 章家恩, 刘文高. 根系分泌物与根际微生物相互作用研究综述[J]. 生态环境, 2003, 12(1):102-105. ZHU Lixia, ZHANG Jiaen, LIU Wengao. Review of studies on interactions between root exudates and rhizopheric microorganisms[J]. Ecology and Environment, 2003, 12(1):102-105.
[20] DONG X, YAO H Y, HUANG C Y. Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils[J]. Plant Soil, 2006, 288(1):319-331.
[21] 黄益宗, 冯宗伟, 张福珠. 化感物质对土壤硝化反应影响的研究[J]. 土壤与环境, 1999, 8(3):203-307. HUANG Yizong, FENG Zongwei, ZHANG Fuzhu. Effect of allelochemicals on nitrification in soil[J]. Soil and Environmental Sciences, 1999, 8(3):203-307.
[22] 刘秀芬. 化感物质对土壤硝化作用的影响[J]. 中国生态农业学报, 2002, 10(2):60-62. LIU Xiufen. Effects of allelochemicals on soil nitrification[J]. Chinese Journal of Eco-Agriculture, 2002, 10(2):60-62.
[23] 吴萼, 刘晓艳, 祝心如. 酚酸类化合物各基团对土壤中氮的硝化作用的影响[J]. 环境化学, 1999, 18(5):398-403. WU E, LIU Xiaoyan, ZHU Xinru. The effect of croups in phenolic compounds on inhibition of nitrification in soil[J]. Environmental Chemistry, 1999, 18(5):398-403.
[24] 母容, 潘开文, 王进闯, 等. 阿魏酸、对羟基苯甲酸及其混合液对土壤氮及相关微生物的影响[J]. 生态学报, 2011, 31(3):793-800. MU Rong, PAN Kaiwen, WANG Jinchuang, et al. Effects of ferulic acid, phydroxybenzoic acid and their mixture on mineral nitrogen and relative microbial function groups in forest soils[J]. Acta Ecologica Sinica, 2011, 31(3):793-800.
[25] 谭秀梅,王华田, 孔令刚,等. 杨树人工林连作土壤中酚酸累积规律及对土壤微生物的影响[J]. 山东大学学报(理学版), 2008, 43(1):14-19. TAN Xiumei, WANG Huatian, KONG Linggang, et al. Accumulation of phenolic acids in soil of a continuous croppingPoplar plantation and their effects on soil microbes[J]. Journal of Shandong University(Natural Science), 2008, 43(1):14-19.
[26] 杨阳, 王华田, 王延平, 等. 外源酚酸对杨树幼苗根系生理和形态发育的影响[J]. 林业科学, 2010, 46(11):73-80. YANG Yang, WANG Huatian, WANG Yanping, et al. Effects of exogenous phenolic acids on root physiologic characteristics andmorphologic development of poplar hydroponic cuttings[J]. Scientia Silvae Sinicae, 2010, 46(11):73-80.
[27] 倪桂萍. 酚酸对连作杨树人工林土壤养分有效性及细菌多样性的影响[D]. 泰安:山东农业大学, 2013. NI Guiping. Effects of phenolic acids on soil nutrient availability and bacteria diversity of continuous cropping poplar plantation[D]. Taian: Shandong Agricultural University, 2013.
[28] 王延平, 王华田, 许坛, 等. 酚酸对杨树人工林土壤养分有效性及酶活性的影响[J].应用生态学报, 2013, 24(3):667-674. WANG Yanping, WANG Huatian, XU Tan, et al. Effect of exogenous phenolic acid on soil nutrient availability and enzyme activities in a poplar plantation[J]. Chinese Journal of Applied Ecology, 2013, 24(3):667-674.
[29] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2000. BAO Shidan. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000.
[30] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国科学技术出版社, 2000. LU Rukun, Chemical analysis methods of agricultural soil[M]. Beijing: Science and technology of China Press, 2000.
[31] THANWALEE S, JANICE E T, PHREK G, et al. Effect of rice cultivation systems on nitrogen cycling and nitrifying bacterial community structure[J]. Applied Soil Ecology, 2009, 43(1):139-149.
[32] 赵晶, 冯文强. 不同氮磷钾肥对土壤pH和镉有效性的影响[J]. 土壤学报, 2010, 47(5):953-960. ZHAO Jing, FENG Wenqiang. Effecets of application of nitrogen, phosphorus anf potassium fertilizers on soil pH and cadmium availability[J]. Acta Pedologica Snica, 2010, 47(5):953-960.
[33] RUSSELL E W. Soil conditions and plant growth[M]. London: Longman Publishing Press, 1973.
[34] 董莲华, 杨金水, 袁红莉. 氨氧化细菌的分子生态学研究进展[J]. 应用生态学报, 2008, 19(6):1381-1388. DONG Lianhua, YANG Jinshui, YUAN Hongli. Research advances in molecular ecology of ammonia oxidizing bacteria[J]. Chinese Journal of Applied Ecology, 2008, 19(6):1381-1388.
[35] KARIN Enwall, KARIN Nyberg, STEFAN Bertilsson, et al. Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil[J]. Soil Biology and Biochemistry, 2007, 39(1):106-115.
[36] DANCER W S, PETERSON L A, CHESTERS G. Ammonification and nitrification of nitrogen as influenced by soil pH and previous nitrogen treatments[J]. Soil Science Society of America Journal, 1973, 37(1):67-69.
[37] LAVERMAN A M, ZOOMER H R, VAN VERSEVELD H W, et al. Temporal and spatial variation of nitrogen transformations in a coniferous forest soil[J]. Soil Biology and Biochemistry, 2000, 32(11):1661-1670.
[38] MENDUM T A, HIRSCH P R. Changes in the population structure of β-group autotrophic ammonia oxidizing bacteria in arable soils in response to agricultural practice[J].Soil Biology and Biochemistry, 2002, 34(10):1479-1485.
[39] 谢星光, 陈晏,卜元卿, 等. 酚酸类物质的化感作用研究进展[J]. 生态学报, 2014, 34(22):6417-6428. XIE Xingguang, CHEN Yan, BU Yuanqing, et al. A review of allelopathic researches on phenolic acids[J]. Acta Ecologica Sinica, 2014, 34(22):6417-6428.
[40] GUAR A C, PAREEK R P. A study on the effect of certain phenolic acids and fumaric acid in soil on the development of paddy seedings and nitrogen-fixing bacteria[J]. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite Naturwissenschaftliche Abteilung: Allgemeine, Landwirtschaftliche und Technische Mikrobiologie, 1976, 131(2):148-156.
[41] 何华勤, 沈荔花, 宋碧清, 等. 几种化感物质替代物间的互作效应分析[J]. 应用生态学报, 2005, 16(5):890-894. HE Huaqin, SHEN Lihua, SONG Biqing, et al. Interactive effects between allelochemical substitutes[J]. Chinese Journal of Applied Ecology, 2005, 16(5):890-894.
[42] 杜国营. 黄瓜根系分泌物中化感物质的鉴定及其生物降解研究[D]. 郑州:河南农业大学, 2006. DU Guoying. Identify the phytotoxic substances in root exudates of cucumber and degradation of it by P. chrysosporium[D]. Zhengzhou: Henan Agricultural University, 2006.
[43] 李华玮, 赵绪永, 李鹏坤. 作物连做障碍中酚酸类物质的生物降解研究[J]. 中国农学通报, 2011, 27(18):168-173. LI Huawei, ZHAO Xuyong, LI Pengkun. Researchon biodegradation effect to phenolic acid in even cook obstacles[J]. Chinese Agricultural Science Bulletin, 2011, 27(18):168-173.
[44] 徐淑霞, 张世敏, 尤晓颜, 等. 黄孢原毛平革菌对黄瓜连作土壤酚酸物质的降解[J]. 应用生态学报, 2008, 19(11):2480-2484. XU Shuxia, ZHANG Shimin, YOU Xiaoyan, et al. Degradation of soil phenolic acids by Phanerochaete chrysosporium under continuous cropping of cucumber[J]. Chinese Journal of Applied Ecology, 2008, 19(11):2480-2484.
[1] WANG Hua-tian, WANG Yan-ping*. Hotspot discussion on decline mechanism of replanted plantation [J]. J4, 2013, 48(7): 1-8.
[2] NI Gui-ping, WANG Yan-ping, WANG Hua-tian*, HAN Ya-fei, SANG Ya-lin. Extraction and amplification of bacterial DNA from soils of poplar plantation [J]. J4, 2013, 48(05): 23-28.
[3] JU Ying-lin, LI Xiao-ming*. Allelopathic effects of three submerged macrophytes in the Nansi Lake on Microcystis aeruginosa [J]. J4, 2011, 46(3): 1-8.
Full text



No Suggested Reading articles found!