JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (2): 108-113.doi: 10.6040/j.issn.1671-9352.0.2015.135

Previous Articles     Next Articles

Metric structure in modal logic system S4

GONG Jia-an, WU Hong-bo*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Received:2015-03-30 Online:2016-02-16 Published:2016-03-11

Abstract: The theory of(n)truth degrees of formulas is proposed in modal logic system S4. Some properties of(n)truth are investigated in modal logic system S4. The theory of(n)similarity degrees among modal formulas is proposed and a pseudo-metric is defined thereform on the set of all formulas. The(n)modal logic metric space is derived therefrom which contains the classical logic metric space as a subspace. Finally, a kind of approximate reasoning theory is proposed in modal logic system S4.

Key words: modal logic, (n)truth degrees, approximate reasoning

CLC Number: 

  • O141.1
[1] ROSSER J B, TURQUETTE A R. Many-valued logics[M]. Amsterdam: North-Holland, 1952.
[2] PAVELKA J. On fuzzy logic Ⅰ,Ⅱ,Ⅲ[J]. Zeitschr Math Logik und Grundl der Math, 1979, 25:45-52; 119-134; 447-464.
[3] DE GLAS M. Knowledge representation in a fuzzy setting[R]. Laforia University of Pairs VI, 1989.
[4] YING Mingsheng. A logic for approximate reasoning[J]. J Symbolic Logic, 1994, 59:830-837.
[5] 王国俊.修正的Kleene系统中的Σ-(α-重言式)的理论[J].中国科学:E辑 技术科学,1998,28(2):146-152. WANG Guojun.The theory of Σ-(α-tautologies)in revised kleens system[J]. Science in China: Series E Technological Sciences,1998, 28(2):146-152.
[6] 王国俊,傅丽,宋建社.二值命题逻辑中命题的真度理论[J].中国科学:A辑 数学,2001, 31(11):998-1008. WANG Guojun, FU LI, SONG Jianshe. The theory of true degree in two-valued propositional logic[J]. Science in China: Series A Mathematics, 2001, 31(11):998-1008.
[7] 王国俊.非经典数理逻辑与近似推理[M].2版.北京:科学出版社,2006. WANG Guojun. Non-classical mathematical logic and approximate reasoning[M]. 2nd. Beijing: Science Press, 2006.
[8] 王国俊.数理逻辑引论与归结原理[M].2版.北京:科学出版社,2006. WANG Guojun. An introduction to mathematical logic and resolution principle[M]. 2nd. Beijing: Science Press, 2006.
[9] 吴洪博.Gödel系统中的广义重言式理论[J].模糊系统与数学, 2000,14(4):53-59. WU Hongbo. Theory of generalized tautology in Gödel logic system[J]. Fuzzy Systems and Mathematics, 2000, 14(4):53-69.
[10] 吴洪博. 基础R0代数与基础L*系统[J]. 数学进展, 2003, 32(5):565-576. WU Hongbo. Bassis R0-algebra and bassis L* system[J]. Adwances in Mathematics, 2003, 32(5):565-576.
[11] WU Hongbo. Theory of generalized tautology in revised Kleen system[J]. Science in China: Series E, 2001, 44(3):233-238.
[12] 李玲玲,吴洪博.BR0-分配性及其推广[J]. 山东大学学报(理学版), 2012, 47(2):93-97. LI Lingling, WU Hongbo. BR0-distributivity and its generalization[J]. Journal of Shandong University(Natural Science), 2012, 47(2):93-97.
[13] 周建仁,吴洪博.WBR0-代数的正则性及与其他逻辑代数的关系[J]. 山东大学学报(理学版), 2012, 47(2):86-92. ZHOU Jianren, WU Hongbo. The regularness of WBR0-algebras and relationship with other logic algebras[J].Journal of Shandong University(Natural Science), 2012, 47(2):86-92.
[14] 汪宁,吴洪博.SWBR0-代数的蕴涵理想及其诱导的商代数[J]. 吉林大学学报(理学版), 2013, 51(1):21-26. WANG Ning, WU Hongbo. Implication ideal with derived quotiend algebra of SWBR0-algebra[J]. Journal of Jilin University(Natural Science), 2013, 51(1):21-26.
[15] 王国俊,段巧林. 模态逻辑中的(n)真度理论与和谐定理[J]. 中国科学:F辑 信息科学,2009,39(2):234-245. WANG Guojun, DUANG Qiaolin. Theory of(n)truth degree of formulas in modal logic and a consistency theorem[J]. Science in China: Series F Information Sciences, 2009, 39(2):234-245.
[16] BLACKBURN P, RIJKE M, VENEMA Y. Modal Logic[M]. Cambridge: Cambridge University Press, 2001.
[1] ZUO Wei-bing. The conditional randomized truth degree of formulas in the fuzzy logic system L* [J]. J4, 2012, 47(6): 121-126.
[2] ZHANG Le, PEI Dao-wu. The conditional truth degree of theory in proposition logic [J]. J4, 2012, 47(2): 82-85.
[3] CUI Mei-hua. The D-conditional truth degree of formulas and approximate reasoning in the  G3 propositional logic system [J]. J4, 2010, 45(11): 52-58.
[4] JU Chang-Tian, WANG Guo-Dun. Exact generalized tautologies in fuzzy modal logic system M?uk [J]. J4, 2009, 44(8): 80-85.
[5] DUAN Jing-Yao, WANG Guo-Jun. Three types of fuzzy modal logics about K [J]. J4, 2008, 43(12): 31-39.
[6] LIU Hua-wen,WANG Guo-jun,ZHANG Cheng-yi . Approximate reasoning in several logic systems [J]. J4, 2007, 42(7): 77-81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!